Question #199501

A plane curve is given by γ(θ)=(rcosθ,rsinθ)

γ(θ)=(rcos⁡θ,rsin⁡θ), where r is a smooth function of θ

θ (so that (r,θ)

(r,θ) are the polar coordinates of γ(θ)

γ(θ)). Under what conditions is γ

γ regular? Find all functions r(θ)

r(θ) for which γ

γ is unit-speed. Show that, if γ

γ is unit-speed, the image of γ

γ is a circle; what is its radius?


1
Expert's answer
2021-05-28T10:23:04-0400

Curve is regular if γ(θ)0\gamma' (\theta)\ne0 everywhere.

γ(θ)=(rsinθ,rcosθ)\gamma' (\theta)=(-rsin\theta,rcos\theta)

γ(θ)=r||\gamma' (\theta)||=r

So curve is regular if r0r\ne 0


s(θ)=0θrdα=rθ    θ=s/rs(\theta)=\int^{\theta}_0rd\alpha=r\theta\implies \theta=s/r

Unit speed curve:

γ(s)=(rcos(s/r),rsin(s/r))\gamma(s)=(rcos(s/r),rsin(s/r))

Image of γ(s)\gamma(s) :

γ(s)=r||\gamma(s)||=r


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS