Solution.
S=41πr2−21•5•5=425π−225=7.
xC=S1∫05(x(25−x2−(5−x))dx==71∫05(x25−x2−5x+x2))dx==71•6125=42125.
yC=2S1∫05(25−x2−(5−x)2)dx=141∫05(−2x2+10x)dx=141(−32x3+5x2)∣05=141•3125=42125.
So, centroid (xC,yC)=(42125,42125).
Answer. (42125,42125).
Comments