Question #186282

Find the centroid of the area bounded by

x2 + y2 = 25, x + y = 5


1
Expert's answer
2021-05-07T10:18:11-0400

Solution.


S=14πr21255=254π252=7.S=\frac{1}{4}πr^2-\frac{1}{2}•5•5=\newline \frac{25}{4}π-\frac{25}{2}=7.

xC=1S05(x(25x2(5x))dx==1705(x25x25x+x2))dx==171256=12542.x_C=\frac{1}{S}\int_0^5 (x(\sqrt{25-x^2}-(5-x))dx=\newline =\frac{1}{7}\int_0^5 (x\sqrt{25-x^2}-5x+x^2))dx=\newline =\frac{1}{7}•\frac{125}{6}=\frac{125}{42}.

yC=12S05(25x2(5x)2)dx=11405(2x2+10x)dx=114(23x3+5x2)05=1141253=12542.y_C=\frac{1}{2S}\int_0^5(25-x^2-(5-x)^2)dx=\newline \frac{1}{14}\int_0^5(-2x^2+10x)dx=\newline \frac{1}{14}(-\frac{2}{3}x^3+5x^2)|_0^5=\newline \frac{1}{14}•\frac{125}{3}=\frac{125}{42}.

So, centroid (xC,yC)=(12542,12542).(x_C,y_C)=(\frac{125}{42},\frac{125}{42}).

Answer. (12542,12542).(\frac{125}{42},\frac{125}{42}).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS