Solution:
(a):
y=x3−x2+x+5
On differentiating both sides w.r.t x ,
dxdy=3x2−2x+1+0 [Using dxd(xn)=n.xn−1 ]
⇒dxdy=3x2−2x+1
(b):
y=x3+7x2−4x+8
On differentiating both sides w.r.t x ,
dxdy=3x2+7(2)x−4(1)+0⇒dxdy=3x2+14x−4 [Using dxd(xn)=n.xn−1 ]
(c):
s=17t3−5t2−5t−3
On differentiating both sides w.r.t t ,
dtds=17(3)t2−5(2)t−5(1)−0 [Using dxd(xn)=n.xn−1 ]
⇒dtds=51t2−10t−5
Comments