A particle moves so that its position vector at time t is given by r =e−t(costi +sintj). Show that at any time t, (a) its velocity v is inclined to the vector r at a constant angle 3 (b) its acceleration vector is at right angles to the vector r.
"\\text{v}=(-e^{-t}\\cos t-e^{-t}\\sin t)\\text{i}"
"+(-e^{-t}\\sin t+e^{-t}\\cos t)\\text{j}"
a)
"\\text{r}\\cdot \\text{v}=(e^{-t}\\cos t)(-e^{-t}\\cos t-e^{-t}\\sin t)""+(e^{-t}\\sin t)(-e^{-t}\\sin t+e^{-t}\\cos t)"
"=-e^{-2t}\\cos^2t-e^{-2t}\\cos t\\sin t"
"-e^{-2t}\\sin^2t+e^{-2t}\\cos t\\sin t=-e^{-2t}"
"(-e^{-t}\\cos t-e^{-t}\\sin t)^2+(-e^{-t}\\sin t+e^{-t}\\cos t)^2"
"=e^{-2t}\\cos^2t+2e^{-2t}\\cos t\\sin t+e^{-2t}\\sin^2t"
"e^{-2t}\\cos^2t-2e^{-2t}\\cos t\\sin t+e^{-2t}\\sin^2t=2e^{-2t}"
"\\cos\\angle(\\text{r}, \\text{v})=\\dfrac{\\text{r}\\cdot \\text{v}}{|\\text{r}||\\text{v}|}"
"=\\dfrac{-e^{-2t}}{e^{-t}\\sqrt{2}e^{-t}}=-\\dfrac{\\sqrt{2}}{2}"
"\\angle(\\text{r}, \\text{v})=\\dfrac{3\\pi}{4}=\\text{const}"
b)
"+(e^{-t}\\sin t)(-2e^{-t}\\cos t)=0"
Hence acceleration vector "\\text{a}" is at right angles to the vector "\\text{r}".
Comments
Leave a comment