Answer to Question #173400 in Differential Geometry | Topology for Nestor Freeman

Question #173400

A particle moves so that its position vector at time t is given by r =e−t(costi +sintj). Show that at any time t, (a) its velocity v is inclined to the vector r at a constant angle 3 (b) its acceleration vector is at right angles to the vector r.


1
Expert's answer
2021-03-31T01:52:22-0400
r=(etcost)i+(etsint)j\text{r}=(e^{-t}\cos t)\text{i}+(e^{-t}\sin t)\text{j}

v=(etcostetsint)i\text{v}=(-e^{-t}\cos t-e^{-t}\sin t)\text{i}

+(etsint+etcost)j+(-e^{-t}\sin t+e^{-t}\cos t)\text{j}


a=(2etsint)i+(2etcost)j\text{a}=(2e^{-t}\sin t)\text{i}+(-2e^{-t}\cos t)\text{j}

a)

rv=(etcost)(etcostetsint)\text{r}\cdot \text{v}=(e^{-t}\cos t)(-e^{-t}\cos t-e^{-t}\sin t)

+(etsint)(etsint+etcost)+(e^{-t}\sin t)(-e^{-t}\sin t+e^{-t}\cos t)

=e2tcos2te2tcostsint=-e^{-2t}\cos^2t-e^{-2t}\cos t\sin t

e2tsin2t+e2tcostsint=e2t-e^{-2t}\sin^2t+e^{-2t}\cos t\sin t=-e^{-2t}


r=(etcost)2+(etsint)2=et|\text{r}|=\sqrt{(e^{-t}\cos t)^2+(e^{-t}\sin t)^2 }=e^{-t}

(etcostetsint)2+(etsint+etcost)2(-e^{-t}\cos t-e^{-t}\sin t)^2+(-e^{-t}\sin t+e^{-t}\cos t)^2

=e2tcos2t+2e2tcostsint+e2tsin2t=e^{-2t}\cos^2t+2e^{-2t}\cos t\sin t+e^{-2t}\sin^2t

e2tcos2t2e2tcostsint+e2tsin2t=2e2te^{-2t}\cos^2t-2e^{-2t}\cos t\sin t+e^{-2t}\sin^2t=2e^{-2t}


v=2e2t=2et|\text{v}|=\sqrt{2e^{-2t} }=\sqrt{2}e^{-t}

cos(r,v)=rvrv\cos\angle(\text{r}, \text{v})=\dfrac{\text{r}\cdot \text{v}}{|\text{r}||\text{v}|}

=e2tet2et=22=\dfrac{-e^{-2t}}{e^{-t}\sqrt{2}e^{-t}}=-\dfrac{\sqrt{2}}{2}

(r,v)=3π4=const\angle(\text{r}, \text{v})=\dfrac{3\pi}{4}=\text{const}



b)


ra=(etcost)(2etsint)\text{r}\cdot \text{a}=(e^{-t}\cos t)(2e^{-t}\sin t)

+(etsint)(2etcost)=0+(e^{-t}\sin t)(-2e^{-t}\cos t)=0

Hence acceleration vector a\text{a} is at right angles to the vector r\text{r}.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment