Solve the following initial value problem by using Laplace transform 2d^2y/dt^2 +3 dy/dt - 2y=te^-2t, y(0)=0, yβ(0)=-2
"2y^{\\prime \\prime}+3y^\\prime -2y=te^{-2t}," "y(0)=0," "y^\\prime (0)=-2"
Using Laplace transform, we have
"2\\mathcal{L}\\{y^{\\prime \\prime}\\}+3 \\mathcal{L}\\{ y^\\prime \\}-2 \\mathcal{L}\\{ y\\}= \\mathcal{L}\\{te^{-2t}\\}"
We will use the following formulas:
"\\mathcal{L}\\{y^{\\prime \\prime}\\}= s^2Y(s)-sy(0)-y^\\prime (0)"
"\\mathcal{L}\\{y^{\\prime }\\}= sY(s)-y(0)"
"\\mathcal{L}\\{y\\}= Y(s)"
"\\mathcal{L}\\{t^ne^{at}\\}= \\frac{n!}{(s-a)^{n+1}}"
So, we have:
"2\\left(s^2Y(s)-sy(0)-y^\\prime (0)\n\\right)+3\\left(sY(s)-y(0)\n\\right)-2Y(s)=\\frac{1}{(s+2)^2}"
"2s^2Y(s)+4+3sY(s)-2Y(s)=\\frac{1}{(s+2)^2}"
"Y(s)=\\frac{\\frac{1}{(s+2)^2}-4}{2s^2+3s-2}=\\frac{-4s^2-16s-15}{(2s^2+3s-2)(s+2)^2}= \\frac{-4s^2-16s-15}{(2s-1)(s+2)^3}=-\\frac{192}{125(2s-1)}+\\frac{96}{125(s+2)}-\\frac{2}{25(s+2)^2}-\\frac{1}{5(s+2)^3}"
Now we take the inverse transform:
"y(t)=-\\frac{192}{125}e^{t\/2}+\\frac{96}{125}e^{-2t}-\\frac{2}{25}te^{-2t}-\\frac{1}{10}t^2e^{-2t}"
Answer: "y(t)=-\\frac{192}{125}e^{t\/2}+\\frac{96}{125}e^{-2t}-\\frac{2}{25}te^{-2t}-\\frac{1}{10}t^2e^{-2t}" .
Comments
Leave a comment