Question #164801

Solve the following initial value problem by using Laplace transform 2d^2y/dt^2 +3 dy/dt - 2y=te^-2t, y(0)=0, y’(0)=-2


1
Expert's answer
2021-02-24T06:07:47-0500

2y+3y2y=te2t,2y^{\prime \prime}+3y^\prime -2y=te^{-2t}, y(0)=0,y(0)=0, y(0)=2y^\prime (0)=-2

Using Laplace transform, we have

2L{y}+3L{y}2L{y}=L{te2t}2\mathcal{L}\{y^{\prime \prime}\}+3 \mathcal{L}\{ y^\prime \}-2 \mathcal{L}\{ y\}= \mathcal{L}\{te^{-2t}\}


We will use the following formulas:

L{y}=s2Y(s)sy(0)y(0)\mathcal{L}\{y^{\prime \prime}\}= s^2Y(s)-sy(0)-y^\prime (0)

L{y}=sY(s)y(0)\mathcal{L}\{y^{\prime }\}= sY(s)-y(0)

L{y}=Y(s)\mathcal{L}\{y\}= Y(s)

L{tneat}=n!(sa)n+1\mathcal{L}\{t^ne^{at}\}= \frac{n!}{(s-a)^{n+1}}


So, we have:

2(s2Y(s)sy(0)y(0))+3(sY(s)y(0))2Y(s)=1(s+2)22\left(s^2Y(s)-sy(0)-y^\prime (0) \right)+3\left(sY(s)-y(0) \right)-2Y(s)=\frac{1}{(s+2)^2}

2s2Y(s)+4+3sY(s)2Y(s)=1(s+2)22s^2Y(s)+4+3sY(s)-2Y(s)=\frac{1}{(s+2)^2}

Y(s)=1(s+2)242s2+3s2=4s216s15(2s2+3s2)(s+2)2=4s216s15(2s1)(s+2)3=192125(2s1)+96125(s+2)225(s+2)215(s+2)3Y(s)=\frac{\frac{1}{(s+2)^2}-4}{2s^2+3s-2}=\frac{-4s^2-16s-15}{(2s^2+3s-2)(s+2)^2}= \frac{-4s^2-16s-15}{(2s-1)(s+2)^3}=-\frac{192}{125(2s-1)}+\frac{96}{125(s+2)}-\frac{2}{25(s+2)^2}-\frac{1}{5(s+2)^3}

Now we take the inverse transform:

y(t)=192125et/2+96125e2t225te2t110t2e2ty(t)=-\frac{192}{125}e^{t/2}+\frac{96}{125}e^{-2t}-\frac{2}{25}te^{-2t}-\frac{1}{10}t^2e^{-2t}


Answer: y(t)=192125et/2+96125e2t225te2t110t2e2ty(t)=-\frac{192}{125}e^{t/2}+\frac{96}{125}e^{-2t}-\frac{2}{25}te^{-2t}-\frac{1}{10}t^2e^{-2t} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS