2y′′+3y′−2y=te−2t, y(0)=0, y′(0)=−2
Using Laplace transform, we have
2L{y′′}+3L{y′}−2L{y}=L{te−2t}
We will use the following formulas:
L{y′′}=s2Y(s)−sy(0)−y′(0)
L{y′}=sY(s)−y(0)
L{y}=Y(s)
L{tneat}=(s−a)n+1n!
So, we have:
2(s2Y(s)−sy(0)−y′(0))+3(sY(s)−y(0))−2Y(s)=(s+2)21
2s2Y(s)+4+3sY(s)−2Y(s)=(s+2)21
Y(s)=2s2+3s−2(s+2)21−4=(2s2+3s−2)(s+2)2−4s2−16s−15=(2s−1)(s+2)3−4s2−16s−15=−125(2s−1)192+125(s+2)96−25(s+2)22−5(s+2)31
Now we take the inverse transform:
y(t)=−125192et/2+12596e−2t−252te−2t−101t2e−2t
Answer: y(t)=−125192et/2+12596e−2t−252te−2t−101t2e−2t .
Comments