Question #173910

Problem:

Part A: Let X be a topological space and ∞ / ∈ X. Define b X = X ∪{∞} and consider on b X the family: T = {A ⊂ X| A is open in X}[nb X \K| K is closed and compact in Xo. 1. Show that (b X,T) is a compact topological space. It is henceforth called a one-point compactification of X. 2. Show that b X is Hausdorff if and only if X is Hausdorff and every point in X has a compact neighborhood. 3. Show that a compact Hausdorff space Y coincides with a one-point compactification of Y \{y} ∀y ∈ Y . 4. Show that if f : X → Y is a continuous map such that the pre-image f−1(K) of any compact K ⊂ Y is a compact in X, f extends naturally to a continuous mapb f : b X →b Y .


1
Expert's answer
2021-03-24T10:03:20-0400

(X,τ) — topological space.One-point compactification.XX:=X{}Topology τ on X:τ=τ{VXV and XV — closed and compact in X}.We denote (X,τ) by σ(X).1. Show that σ(x) — compactification of X.(X,τ) is not compact.First we will show that σ(X) is compact. Let U be an open cover of σ(X).We take some V that contains . By definition of τ, XV is a compactsubset of X which is covered by U{V}. So we have some finite subcover ofXV which with the addition of V is a finite subcover of σ(X).X=X since the the only way {} can be open in σ(X) is if X is compact.i:XX given by i(x)=xis an embedding (since the open subsets of X in σ(X) are exactlythe elements of τ).2. We take x, yX, xy.If x, yX, then we can separate them with open sets since X is Hausdorff.We assume y= without loss of generality.X is locally compact. So we can find a compact set KX and an open set UX such that xUK. U and XK are disjointopen subsets of X separating x and y,respectively.(X,\tau)\text{ --- topological space}.\\ \text{One-point compactification.}\\ \infty\notin X\\ X^*:=X\cup\{\infty\}\\ \text{Topology }\tau^* \text{ on }X^*:\\ \tau^*=\tau\cup\{V\sube X^*|\infty\in V\text{ and }X\diagdown V\text{ --- closed and compact in }X\}.\\ \text{We denote }(X^*,\tau^*) \text{ by } \sigma(X).\\ 1.\text{ Show that }\sigma(x)\text{ --- compactification of X}.\\ (X,\tau)\text{ is not compact}.\\ \text{First we will show that }\sigma(X)\text{ is compact. Let } U\text{ be an open cover of }\sigma(X).\\ \text{We take some }V\text{ that contains }\infty.\text{ By definition of }\tau^*,\ X^*\diagdown V \text{ is a compact}\\ \text{subset of }X\text{ which is covered by }U \diagdown\{V\}. \text{ So we have some finite subcover of}\\ X\diagdown V\text{ which with the addition of } V\text{ is a finite subcover of }\sigma(X).\\ \overline{X}=X^* \text{ since the the only way }\{\infty\}\text{ can be open in }\sigma(X)\text{ is if }X\text{ is compact}.\\ i: X\rightarrow X^* \text{ given by }\\ i(x)=x\\ \text{is an embedding (since the open subsets of } X\text{ in } \sigma(X)\text{ are exactly}\\ \text{the elements of }\tau).\\ 2.\ \Rightarrow\\ \text{We take }x,\ y\in X^*,\ x\neq y.\\ \text{If }x,\ y \in X,\text{ then we can separate them with open sets since }X \text{ is Hausdorff}.\\ \text{We assume }y=\infty\text{ without loss of generality}.\\ X\text{ is locally compact. So we can find a compact set }K\sube X\text{ and an open set }\\ U\sube X\text{ such that } x\in U\sube K.\ U \text{ and } X^*\diagdown K \text{ are disjoint}\\ \text{open subsets of }X^* \text{ separating } x \text{ and } y, \text{respectively.}

\Leftarrow

Suppose σ(X)\sigma(X) is Hausdorff. Then XX is Hausdorff since it is homeomorphic to a subspace of a Hausdorff space. XX is locally compact since it is homeomorphic to an open subset of the locally compact space σ(X)\sigma(X).

3.3.

A compactification of a topological space XX is a pair (Y;f)(Y;f) consisting of a topological space YY and a continuous map f:XYf: X\longrightarrow Y such that: YY is compact, ff is a homeomorphism onto f(X)f(X), and f(X)f(X) is dense in YY, i. e. f(X)=Y\overline{f(X)}=Y.

In our case f:Y{y}Yf: Y\diagdown \{y\}\longrightarrow Y.

YY is compact.

ff is a homeomorphism onto f(Y{y}).f(Y\diagdown\{y\}).

f(Y{y})=Y.\overline{f(Y\diagdown\{y\})}=Y.

4.4.

Show that if f:XYf: X\longrightarrow Y is a continuous map such that the pre-image f1(K)f^{-1}(K) of any compact KYK\subset Y is a compact in XX, ff extends naturally to a continuous mapσ(f):σ(X)σ(Y).\sigma(f):\sigma(X)\longrightarrow \sigma(Y).

We should define σ(f)(x)=f(x)\sigma(f)(x)=f(x) for xx\neq\infty and σ(f)()=\sigma(f)(\infty)=\infty.

Let UYU\subset Y be an open subset.

If U\infty\notin U then (σ(f))1(U)=f1(U)(\sigma(f))^{-1}(U)=f^{-1}(U) is open since ff is continuous.

If U\infty\in U then U=(YK){}U=(Y\diagdown K)\cup\{\infty\} and (σ(f))1((YK){})=(σ(f))1(YK)(σ(f))1({})=(σ(f))1(YK){}.(σ(f))1(YK)=X(σ(f))1(K).(\sigma(f))^{-1}((Y\diagdown K)\cup\{\infty\})=(\sigma(f))^{-1}(Y\diagdown K)\cup(\sigma(f))^{-1}(\{\infty\})=(\sigma(f))^{-1}(Y\diagdown K)\cup\{\infty\}.\\ (\sigma(f))^{-1}(Y\diagdown K)=X\diagdown (\sigma(f))^{-1}(K).

KK is closed and compact.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS