Question #186279

Find the centroid of the area bounded by

y2 = x3, y = 2x


1
Expert's answer
2021-05-07T10:07:05-0400

First, we find the points of intersection of the graphs y2=x3y^2=x^3 and y=2x.

y2=x3=(2x)2=4x2y^2=x^3=(2x)^2=4x^2 : x=0, y=0 and x=4, y=8.

On the segment 0x40\leq x\leq 4 we have 2xx3/22x\geq x^{3/2}.

Let Ω\Omega denotes the region {x3/2y2x,0x4}\{x^{3/2}\leq y\leq 2x, 0\leq x\leq 4\}.

The centroid CC of Ω\Omega has coordinates xC=Ix/A, yC=Iy/Ax_C=I_x/A,\ y_C=I_y/A, where Ix=ΩxdxdyI_x=\int\int_{\Omega}xdxdy, Iy=ΩydxdyI_y=\int\int_{\Omega}ydxdy, A=ΩdxdyA=\int\int_{\Omega}dxdy.

Calculate these integrals:

A=Ωdxdy=04(x3/22xdy)dx=04(2xx3/2)dx=(x22/5x5/2)04=1612.8=3.2A=\int\int_{\Omega}dxdy=\int\limits_0^4\left(\int\limits_{x^{3/2}}^{2x}dy\right)dx=\int\limits_0^4(2x-x^{3/2})dx=(x^2-2/5x^{5/2})|_0^4 = 16-12.8=3.2

Ix=Ωxdxdy=04(x3/22xdy)xdx=04x(2xx3/2)dx=(23x327x7/2)04=128/3256/7=128/21I_x=\int\int_{\Omega}xdxdy=\int\limits_0^4\left(\int\limits_{x^{3/2}}^{2x}dy\right)xdx=\int\limits_0^4x(2x-x^{3/2})dx=(\frac{2}{3}x^3-\frac{2}{7}x^{7/2})|_0^4=128/3-256/7=128/21

Iy=Ωydxdy=04(x3/22xydy)dx=04y22x3/22xdx=04(2x2x3/2)dx=(23x318x4)04=128/332=32/3I_y=\int\int_{\Omega}ydxdy=\int\limits_0^4\left(\int\limits_{x^{3/2}}^{2x}ydy\right)dx=\int\limits_0^4\frac{y^2}{2}\left|^{2x}_{x^{3/2}}\right.dx=\int\limits_0^4(2x^2-x^3/2)dx=\left(\frac{2}{3}x^3-\frac{1}{8}x^4\right)\left|_0^4\right.=128/3-32=32/3

Now we find the coordinates of the centroid:

xC=(128/21)/3.2=40/21x_C=(128/21)/3.2=40/21

yC=(32/3)/3.2=10/3y_C=(32/3)/3.2=10/3


Answer. C=(4021,103)C=\left(\frac{40}{21},\frac{10}{3}\right).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS