First, we find the points of intersection of the graphs y 2 = x 3 y^2=x^3 y 2 = x 3 and y=2x.
y 2 = x 3 = ( 2 x ) 2 = 4 x 2 y^2=x^3=(2x)^2=4x^2 y 2 = x 3 = ( 2 x ) 2 = 4 x 2 : x=0, y=0 and x=4, y=8.
On the segment 0 ≤ x ≤ 4 0\leq x\leq 4 0 ≤ x ≤ 4 we have 2 x ≥ x 3 / 2 2x\geq x^{3/2} 2 x ≥ x 3/2 .
Let Ω \Omega Ω denotes the region { x 3 / 2 ≤ y ≤ 2 x , 0 ≤ x ≤ 4 } \{x^{3/2}\leq y\leq 2x, 0\leq x\leq 4\} { x 3/2 ≤ y ≤ 2 x , 0 ≤ x ≤ 4 } .
The centroid C C C of Ω \Omega Ω has coordinates x C = I x / A , y C = I y / A x_C=I_x/A,\ y_C=I_y/A x C = I x / A , y C = I y / A , where I x = ∫ ∫ Ω x d x d y I_x=\int\int_{\Omega}xdxdy I x = ∫ ∫ Ω x d x d y , I y = ∫ ∫ Ω y d x d y I_y=\int\int_{\Omega}ydxdy I y = ∫ ∫ Ω y d x d y , A = ∫ ∫ Ω d x d y A=\int\int_{\Omega}dxdy A = ∫ ∫ Ω d x d y .
Calculate these integrals:
A = ∫ ∫ Ω d x d y = ∫ 0 4 ( ∫ x 3 / 2 2 x d y ) d x = ∫ 0 4 ( 2 x − x 3 / 2 ) d x = ( x 2 − 2 / 5 x 5 / 2 ) ∣ 0 4 = 16 − 12.8 = 3.2 A=\int\int_{\Omega}dxdy=\int\limits_0^4\left(\int\limits_{x^{3/2}}^{2x}dy\right)dx=\int\limits_0^4(2x-x^{3/2})dx=(x^2-2/5x^{5/2})|_0^4 = 16-12.8=3.2 A = ∫ ∫ Ω d x d y = 0 ∫ 4 ( x 3/2 ∫ 2 x d y ) d x = 0 ∫ 4 ( 2 x − x 3/2 ) d x = ( x 2 − 2/5 x 5/2 ) ∣ 0 4 = 16 − 12.8 = 3.2
I x = ∫ ∫ Ω x d x d y = ∫ 0 4 ( ∫ x 3 / 2 2 x d y ) x d x = ∫ 0 4 x ( 2 x − x 3 / 2 ) d x = ( 2 3 x 3 − 2 7 x 7 / 2 ) ∣ 0 4 = 128 / 3 − 256 / 7 = 128 / 21 I_x=\int\int_{\Omega}xdxdy=\int\limits_0^4\left(\int\limits_{x^{3/2}}^{2x}dy\right)xdx=\int\limits_0^4x(2x-x^{3/2})dx=(\frac{2}{3}x^3-\frac{2}{7}x^{7/2})|_0^4=128/3-256/7=128/21 I x = ∫ ∫ Ω x d x d y = 0 ∫ 4 ( x 3/2 ∫ 2 x d y ) x d x = 0 ∫ 4 x ( 2 x − x 3/2 ) d x = ( 3 2 x 3 − 7 2 x 7/2 ) ∣ 0 4 = 128/3 − 256/7 = 128/21
I y = ∫ ∫ Ω y d x d y = ∫ 0 4 ( ∫ x 3 / 2 2 x y d y ) d x = ∫ 0 4 y 2 2 ∣ x 3 / 2 2 x d x = ∫ 0 4 ( 2 x 2 − x 3 / 2 ) d x = ( 2 3 x 3 − 1 8 x 4 ) ∣ 0 4 = 128 / 3 − 32 = 32 / 3 I_y=\int\int_{\Omega}ydxdy=\int\limits_0^4\left(\int\limits_{x^{3/2}}^{2x}ydy\right)dx=\int\limits_0^4\frac{y^2}{2}\left|^{2x}_{x^{3/2}}\right.dx=\int\limits_0^4(2x^2-x^3/2)dx=\left(\frac{2}{3}x^3-\frac{1}{8}x^4\right)\left|_0^4\right.=128/3-32=32/3 I y = ∫ ∫ Ω y d x d y = 0 ∫ 4 ( x 3/2 ∫ 2 x y d y ) d x = 0 ∫ 4 2 y 2 ∣ ∣ x 3/2 2 x d x = 0 ∫ 4 ( 2 x 2 − x 3 /2 ) d x = ( 3 2 x 3 − 8 1 x 4 ) ∣ ∣ 0 4 = 128/3 − 32 = 32/3
Now we find the coordinates of the centroid:
x C = ( 128 / 21 ) / 3.2 = 40 / 21 x_C=(128/21)/3.2=40/21 x C = ( 128/21 ) /3.2 = 40/21
y C = ( 32 / 3 ) / 3.2 = 10 / 3 y_C=(32/3)/3.2=10/3 y C = ( 32/3 ) /3.2 = 10/3
Answer . C = ( 40 21 , 10 3 ) C=\left(\frac{40}{21},\frac{10}{3}\right) C = ( 21 40 , 3 10 ) .
Comments