First, we find the points of intersection of the graphs y2=x3 and y=2x.
y2=x3=(2x)2=4x2 : x=0, y=0 and x=4, y=8.
On the segment 0≤x≤4 we have 2x≥x3/2.
Let Ω denotes the region {x3/2≤y≤2x,0≤x≤4}.
The centroid C of Ω has coordinates xC=Ix/A, yC=Iy/A, where Ix=∫∫Ωxdxdy, Iy=∫∫Ωydxdy, A=∫∫Ωdxdy.
Calculate these integrals:
A=∫∫Ωdxdy=0∫4(x3/2∫2xdy)dx=0∫4(2x−x3/2)dx=(x2−2/5x5/2)∣04=16−12.8=3.2
Ix=∫∫Ωxdxdy=0∫4(x3/2∫2xdy)xdx=0∫4x(2x−x3/2)dx=(32x3−72x7/2)∣04=128/3−256/7=128/21
Iy=∫∫Ωydxdy=0∫4(x3/2∫2xydy)dx=0∫42y2∣∣x3/22xdx=0∫4(2x2−x3/2)dx=(32x3−81x4)∣∣04=128/3−32=32/3
Now we find the coordinates of the centroid:
xC=(128/21)/3.2=40/21
yC=(32/3)/3.2=10/3
Answer. C=(2140,310).
Comments