Question #186240

Find the centroid of the area bounded by


x + 2y = 6, x= 0 y= 0


1
Expert's answer
2021-05-07T09:12:18-0400

Solution:Solve the line x=0,y=0 and x+2y=6 by taking two at a time.We get the vertices of triangle as (0,0),(6,0) and (0,3).So we get right angled traiangle as area.Hence the centroid of the triangle area is                            =(x1+x2+x33,y1+y2+y33)=(0+6+03,0+0+33)=(63,33)=(2,1) the centroid of the area bounded by x+2y=6,x=0 and y=0 is (2,1).Solution: Solve ~the ~ line ~x=0,y=0 ~ and ~ x+2y=6~by ~ taking ~ two ~ at ~ a ~time. \\We ~ get ~ the ~ vertices ~ of ~ triangle ~ as ~ (0,0),(6,0)~ and ~ (0,3). \\So ~we~get ~right ~ angled ~traiangle ~ as ~area. \\Hence ~ the ~ centroid ~ of ~ the ~triangle~ area ~is \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})=(\frac{0+6+0}{3},\frac{0+0+3}{3})=(\frac{6}{3},\frac{3}{3})=(2,1) \\\therefore~the ~centroid~ of~ the ~area ~bounded ~by~ x + 2y = 6, x= 0~ and~ y= 0 ~is~(2,1).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS