Calculate the normal and the geodesic curvatures of the following curves on
the given surfaces:
(a) The circle γ(t) = (cost, sin t, 1) on the paraboloid σ(u, v) = (u, v, u^2 + v^2).
(b) The right circular helix γ(θ) = (a cos θ, a sin θ, bθ) on the right circular cylinder
σ(u, v) = (a cos u, a sin u, v), where a, b > 0 are constants.
1
Expert's answer
2020-11-12T19:26:30-0500
The unit normal vector is given by (http://mathonline.wikidot.com/the-frenet-serret-formulas): N(s)=∣∣T′(s)∣∣T′(s) , where T(s)=∣∣r′(s)∣∣r′(s),
where r(s) is an arc-length parametrization of r(t).
(a) We point out that one has an arc-length parametrization in this case. The length of the circle is 2π and it corresponds to the interval [0,2π) for possible values of t. Thus, t=s. We have:
The geodesic curvature is (https://encyclopediaofmath.org/wiki/Geodesic_curvature):
kg=∣r′∣3(r′,r′′,n) , where n is a normal vector for the surrface. The normal vector is:
n=(2u,2v,−1) (see https://mathworld.wolfram.com/NormalVector.html).
After substitution of the curve equation, we get that n=(2cost,2sint,−1) on the points of the curve. Thus, kg=∣∣−sint−cost2costcost−sint2sint00−1∣∣=−1
(b) We calculate the length of the curve between [0,2π) and get:
The geodesic curvature is: kg=∣r′∣3(r′,r′′,n) .The normal vector for the parametric surface is: n=ru×rv=∣∣i−asinu0jacosu0k01∣∣=(acosu,asinu,0) . We set u=θ and get the following curvature:
Comments