All possible topologies on the set X="\\{1,2,3,4\\}" is all possible collection of subsets which contain finite intersection and arbitrary union of the power set of "\\{1,2,3,4\\}." Its power set has "2^4=16" elements. In each topology the empty set and the entire set is there. Rest we must check options.
We just note
"\\tau =\\{\\emptyset,\\{1\\}, \\{1,2,3,4\\}\\}" and "\\tau =\\{\\emptyset,\\{a\\}, \\{1,2,3,4\\}\\}" are isomorphic topologies where a is 1,2,3,or 4.So we just write once their equivalent class. The classes are too many.
"\\tau=\\{\\empty , \\{1\\},\\{1,2,3,4\\}\\}" ,
"\\tau=\\{\\empty , \\{1,2,3\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\},\\{1,2,3\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1,2\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1,2\\}, \\{1,2,3\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1,2\\}, \\{1\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1,2\\}, \\{1\\}, \\{2\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{4\\}, \\{1,2,3\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{1,2,3\\}, \\{1,4\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{1,2,3\\}, \\{4\\}\\{1,4\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{2,3\\}\\{1,2,3\\}, \\{1,4\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1,2\\}, \\{1,2,3\\}, \\{1,2,4\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{1,2,3\\}, \\{1,4\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1,2\\}, \\{3\\}, \\{1,2,3\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1,2\\}, \\{3\\},\\{1,2,3\\}, \\{1,2,4\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{2,3\\}, \\{1,4\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{1,2\\},\\{1,2,3\\}, \\{1,2,4\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{1,2\\}, \\{1,2,3\\}, \\{1,3\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{2\\}, \\{1,2\\}, \\{1,2,3\\}, \\{1,3\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{1,2,3\\}, \\{1,2\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{2\\},\\{1,2,3\\}, \\{1,2\\}\\{1,2,3,4\\}\\}"
"\\tau=\\{\\empty , \\{1\\}, \\{3\\},\\{1,2,3\\}, \\{1,3\\},\\{1,2,4\\},\\{1,2\\},\\{1,2,3,4\\}\\}"
"\\tau=\\{\\emptyset,\\{1\\},\\{1,2\\},\\{1,3\\},\\{1,2,3\\},\\{1,2,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{2\\},\\{1,2\\},\\{1,2,3\\},\\{1,2,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{2\\},\\{1,2\\},\\{1,3\\},\\{1,2,3\\},\\{1,2,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{2\\},\\{1,2\\},\\{2,3\\},\\{1,2,3\\},\\{1,4\\},\\{1,2,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{1,2\\},\\{1,3\\},\\{1,2,3\\},\\{1,4\\},\\{12,2,4\\},\\{1,3,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{2\\},\\{1,2\\}.\\{1,3\\},\\{1,2,3\\},\\{1,4\\},\\{1,2,4\\},\\{1,3,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{2\\},\\{1,2\\},\\{3\\},\\{1,3\\},\\{2,3\\},\\{1,2,3\\},\\{1,2,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{2\\},\\{1,2\\},\\{3\\},\\{1,3\\},\\{2,3\\},\\{1,2,3\\},\\{1,4\\},\\{1,2,4\\},\\{1,3,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{2\\},\\{1,2\\},\\{3\\},\\{1,3\\},\\{2,3\\},\\{1,2,3\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1\\},\\{2\\},\\{1,2\\},\\{3\\},\\{1,3\\},\\{2,3\\},\\{1,2,3\\},\n\\{4\\},\\{1,4\\},\\{2,4\\},\\\\\n\\{1,2,4\\},\\{3,4\\},\\{1,3,4\\},\\{2,3,4\\},\\{1,2,3,4\\}\\}\\\\\n\\tau=\\{\\emptyset,\\{1,2,3,4\\}\\}"
Comments
Leave a comment