Question #141470
Q/State all possible topologies on set X ={1,2,3, 4}.
1
Expert's answer
2020-11-02T14:49:24-0500

All possible topologies on the set X={1,2,3,4}\{1,2,3,4\} is all possible collection of subsets which contain finite intersection and arbitrary union of the power set of {1,2,3,4}.\{1,2,3,4\}. Its power set has 24=162^4=16 elements. In each topology the empty set and the entire set is there. Rest we must check options.

We just note


τ={,{1},{1,2,3,4}}\tau =\{\emptyset,\{1\}, \{1,2,3,4\}\} and τ={,{a},{1,2,3,4}}\tau =\{\emptyset,\{a\}, \{1,2,3,4\}\} are isomorphic topologies where a is 1,2,3,or 4.So we just write once their equivalent class. The classes are too many.

τ={,{1},{1,2,3,4}}\tau=\{\empty , \{1\},\{1,2,3,4\}\} ,

τ={,{1,2,3},{1,2,3,4}}\tau=\{\empty , \{1,2,3\},\{1,2,3,4\}\}

τ={,{1},{1,2,3},{1,2,3,4}}\tau=\{\empty , \{1\},\{1,2,3\},\{1,2,3,4\}\}

τ={,{1,2},{1,2,3,4}}\tau=\{\empty , \{1,2\},\{1,2,3,4\}\}

τ={,{1,2},{1,2,3},{1,2,3,4}}\tau=\{\empty , \{1,2\}, \{1,2,3\},\{1,2,3,4\}\}

τ={,{1,2},{1},{1,2,3,4}}\tau=\{\empty , \{1,2\}, \{1\},\{1,2,3,4\}\}

τ={,{1,2},{1},{2},{1,2,3,4}}\tau=\{\empty , \{1,2\}, \{1\}, \{2\},\{1,2,3,4\}\}

τ={,{4},{1,2,3},{1,2,3,4}}\tau=\{\empty , \{4\}, \{1,2,3\},\{1,2,3,4\}\}

τ={,{1},{1,2,3},{1,4}{1,2,3,4}}\tau=\{\empty , \{1\}, \{1,2,3\}, \{1,4\}\{1,2,3,4\}\}

τ={,{1},{1,2,3},{4}{1,4}{1,2,3,4}}\tau=\{\empty , \{1\}, \{1,2,3\}, \{4\}\{1,4\}\{1,2,3,4\}\}

τ={,{1},{2,3}{1,2,3},{1,4}{1,2,3,4}}\tau=\{\empty , \{1\}, \{2,3\}\{1,2,3\}, \{1,4\}\{1,2,3,4\}\}

τ={,{1,2},{1,2,3},{1,2,4}{1,2,3,4}}\tau=\{\empty , \{1,2\}, \{1,2,3\}, \{1,2,4\}\{1,2,3,4\}\}

τ={,{1},{1,2,3},{1,4},{1,2,3,4}}\tau=\{\empty , \{1\}, \{1,2,3\}, \{1,4\},\{1,2,3,4\}\}

τ={,{1,2},{3},{1,2,3}{1,2,3,4}}\tau=\{\empty , \{1,2\}, \{3\}, \{1,2,3\}\{1,2,3,4\}\}

τ={,{1,2},{3},{1,2,3},{1,2,4},{1,2,3,4}}\tau=\{\empty , \{1,2\}, \{3\},\{1,2,3\}, \{1,2,4\},\{1,2,3,4\}\}

τ={,{2,3},{1,4}{1,2,3,4}}\tau=\{\empty , \{2,3\}, \{1,4\}\{1,2,3,4\}\}

τ={,{1},{1,2},{1,2,3},{1,2,4}{1,2,3,4}}\tau=\{\empty , \{1\}, \{1,2\},\{1,2,3\}, \{1,2,4\}\{1,2,3,4\}\}

τ={,{1},{1,2},{1,2,3},{1,3}{1,2,3,4}}\tau=\{\empty , \{1\}, \{1,2\}, \{1,2,3\}, \{1,3\}\{1,2,3,4\}\}

τ={,{1},{2},{1,2},{1,2,3},{1,3}{1,2,3,4}}\tau=\{\empty , \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,3\}\{1,2,3,4\}\}

τ={,{1},{1,2,3},{1,2}{1,2,3,4}}\tau=\{\empty , \{1\}, \{1,2,3\}, \{1,2\}\{1,2,3,4\}\}

τ={,{1},{2},{1,2,3},{1,2}{1,2,3,4}}\tau=\{\empty , \{1\}, \{2\},\{1,2,3\}, \{1,2\}\{1,2,3,4\}\}

τ={,{1},{3},{1,2,3},{1,3},{1,2,4},{1,2},{1,2,3,4}}\tau=\{\empty , \{1\}, \{3\},\{1,2,3\}, \{1,3\},\{1,2,4\},\{1,2\},\{1,2,3,4\}\}

τ={,{1},{1,2},{1,3},{1,2,3},{1,2,4},{1,2,3,4}}τ={,{1},{2},{1,2},{1,2,3},{1,2,4},{1,2,3,4}}τ={,{1},{2},{1,2},{1,3},{1,2,3},{1,2,4},{1,2,3,4}}τ={,{1},{2},{1,2},{2,3},{1,2,3},{1,4},{1,2,4},{1,2,3,4}}τ={,{1},{1,2},{1,3},{1,2,3},{1,4},{12,2,4},{1,3,4},{1,2,3,4}}τ={,{1},{2},{1,2}.{1,3},{1,2,3},{1,4},{1,2,4},{1,3,4},{1,2,3,4}}τ={,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,2,4},{1,2,3,4}}τ={,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,4},{1,2,4},{1,3,4},{1,2,3,4}}τ={,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,2,3,4}}τ={,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{4},{1,4},{2,4},{1,2,4},{3,4},{1,3,4},{2,3,4},{1,2,3,4}}τ={,{1,2,3,4}}\tau=\{\emptyset,\{1\},\{1,2\},\{1,3\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{1,3\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{2,3\},\{1,2,3\},\{1,4\},\{1,2,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{1,2\},\{1,3\},\{1,2,3\},\{1,4\},\{12,2,4\},\{1,3,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{2\},\{1,2\}.\{1,3\},\{1,2,3\},\{1,4\},\{1,2,4\},\{1,3,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{3\},\{1,3\},\{2,3\},\{1,2,3\},\{1,2,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{3\},\{1,3\},\{2,3\},\{1,2,3\},\{1,4\},\{1,2,4\},\{1,3,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{3\},\{1,3\},\{2,3\},\{1,2,3\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1\},\{2\},\{1,2\},\{3\},\{1,3\},\{2,3\},\{1,2,3\}, \{4\},\{1,4\},\{2,4\},\\ \{1,2,4\},\{3,4\},\{1,3,4\},\{2,3,4\},\{1,2,3,4\}\}\\ \tau=\{\emptyset,\{1,2,3,4\}\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS