All possible topologies on the set X={1,2,3,4} is all possible collection of subsets which contain finite intersection and arbitrary union of the power set of {1,2,3,4}. Its power set has 24=16 elements. In each topology the empty set and the entire set is there. Rest we must check options.
We just note
τ={∅,{1},{1,2,3,4}} and τ={∅,{a},{1,2,3,4}} are isomorphic topologies where a is 1,2,3,or 4.So we just write once their equivalent class. The classes are too many.
τ={∅,{1},{1,2,3,4}} ,
τ={∅,{1,2,3},{1,2,3,4}}
τ={∅,{1},{1,2,3},{1,2,3,4}}
τ={∅,{1,2},{1,2,3,4}}
τ={∅,{1,2},{1,2,3},{1,2,3,4}}
τ={∅,{1,2},{1},{1,2,3,4}}
τ={∅,{1,2},{1},{2},{1,2,3,4}}
τ={∅,{4},{1,2,3},{1,2,3,4}}
τ={∅,{1},{1,2,3},{1,4}{1,2,3,4}}
τ={∅,{1},{1,2,3},{4}{1,4}{1,2,3,4}}
τ={∅,{1},{2,3}{1,2,3},{1,4}{1,2,3,4}}
τ={∅,{1,2},{1,2,3},{1,2,4}{1,2,3,4}}
τ={∅,{1},{1,2,3},{1,4},{1,2,3,4}}
τ={∅,{1,2},{3},{1,2,3}{1,2,3,4}}
τ={∅,{1,2},{3},{1,2,3},{1,2,4},{1,2,3,4}}
τ={∅,{2,3},{1,4}{1,2,3,4}}
τ={∅,{1},{1,2},{1,2,3},{1,2,4}{1,2,3,4}}
τ={∅,{1},{1,2},{1,2,3},{1,3}{1,2,3,4}}
τ={∅,{1},{2},{1,2},{1,2,3},{1,3}{1,2,3,4}}
τ={∅,{1},{1,2,3},{1,2}{1,2,3,4}}
τ={∅,{1},{2},{1,2,3},{1,2}{1,2,3,4}}
τ={∅,{1},{3},{1,2,3},{1,3},{1,2,4},{1,2},{1,2,3,4}}
τ={∅,{1},{1,2},{1,3},{1,2,3},{1,2,4},{1,2,3,4}}τ={∅,{1},{2},{1,2},{1,2,3},{1,2,4},{1,2,3,4}}τ={∅,{1},{2},{1,2},{1,3},{1,2,3},{1,2,4},{1,2,3,4}}τ={∅,{1},{2},{1,2},{2,3},{1,2,3},{1,4},{1,2,4},{1,2,3,4}}τ={∅,{1},{1,2},{1,3},{1,2,3},{1,4},{12,2,4},{1,3,4},{1,2,3,4}}τ={∅,{1},{2},{1,2}.{1,3},{1,2,3},{1,4},{1,2,4},{1,3,4},{1,2,3,4}}τ={∅,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,2,4},{1,2,3,4}}τ={∅,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,4},{1,2,4},{1,3,4},{1,2,3,4}}τ={∅,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,2,3,4}}τ={∅,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{4},{1,4},{2,4},{1,2,4},{3,4},{1,3,4},{2,3,4},{1,2,3,4}}τ={∅,{1,2,3,4}}
Comments