Answer to Question #143633 in Differential Geometry | Topology for anjali

Question #143633
Calculate the first fundamental form, the second fundamental form, and the
Weingarten matrix of the following surface patches of the unit sphere:
(a) σ(θ, φ) = (cos θ cos φ, cos θ sin φ,sin θ).
(b) σ(u, v) = (sech u cos v, sech u sin v, tanh u).
1
Expert's answer
2020-11-16T07:50:04-0500

We remind that for the parametric surface r(u,v)r(u,v) the first fundamental form is (see http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node28.html):

I=ds2=Edu2+2Fdudv+Gdv2,I=ds^2=Edu^2+2Fdudv+Gdv^2, where E=(ru,ru),F=(ru,rv),E=(r_u,r_u), F=(r_u,r_v), G=(rv,rv)G=(r_v,r_v) .

The second fundamental form is: II=Ldu2+2Mdudv+Ndv2II=Ldu^2+2Mdudv+Ndv^2 , where: L=(ru,Nu),M=(rv,Nu),N=(rv,Nv)L=-(r_u,\text{N}_u),M=-(r_v,\text{N}_u),N=-(r_v,\text{N}_v) .

The normal vector is: N=ru×rv=ijk(ru)1(ru)2(ru)3(rv)1(rv)2(rv)3\text{N}=r_u\times r_v=\begin{vmatrix} i & j& k \\ (r_u)_1 & (r_u)_2& (r_u)_3\\ (r_v)_1 & (r_v)_2& (r_v)_3 \end{vmatrix} , where by ()j()_j we denoted the respective coordinates of the vectors.

The Weingarten matrix is the matrix of the shape operator of surface s with respect to variables u and v (see https://resources.wolframcloud.com/FunctionRepository/resources/WeingartenMatrix).

It is given by(MFLGEGF2LFMEEGF2NFMGEGF2MFNEEGF2)\begin{pmatrix} \frac{MF-LG}{EG-F^2} & \frac{LF-ME}{EG-F^2} \\ \frac{NF-MG}{EG-F^2} & \frac{MF-NE}{EG-F^2} \end{pmatrix}


a). rθ=(sinθcosφ,sinθsinφ,cosθ),r_{\theta}=(-sin\,\theta\,cos\varphi,-sin\,\theta\,sin\varphi,cos\,\theta),

rφ=(cosθsinφ,cosθcosφ,0),r_{\varphi}=(-cos\,\theta\,sin\varphi,cos\,\theta\,cos\varphi,0),

E=(rθ,rθ)=sin2θcos2φ+sin2θsin2φ+cos2θ=1E=(r_{\theta},r_{\theta})=sin^2\theta\,cos^2\,\varphi+sin^2\theta\,sin^2\,\varphi+cos^2\theta=1 ,

F=(rθ,rφ)=sinθ  cosθcosφsinφsinθ  cosθcosφsinφ=0,F=(r_{\theta},r_{\varphi})=sin\,\theta\,\,cos\,\theta\,cos\varphi\, sin\varphi-sin\,\theta\,\,cos\,\theta\,cos\varphi\, sin\varphi=0,

G=(rφ,rφ)=cos2θsin2φ+cos2θcos2φ=cos2θ.G=(r_{\varphi},r_{\varphi})=cos^2\,\theta\,sin^2\varphi+cos^2\,\theta\,cos^2\varphi=cos^2\,\theta.

I=dθ+cos2θdφI=d\theta+cos^2\theta\,d\varphi .

N=ijksinθcosφsinθsinφcosθcosθsinφcosθcosφ0=isinθsinφcosθcosθcosφ0jsinθcosφcosθcosθsinφ0+ksinθcosφsinθsinφcosθsinφcosθcosφ=\text{N}=\begin{vmatrix} i & j &k \\ -sin\,\theta\,cos\varphi&-sin\,\theta\,sin\varphi&cos\,\theta\\ -cos\,\theta\,sin\varphi&cos\,\theta\,cos\varphi&0 \end{vmatrix}=i\begin{vmatrix} -sin\,\theta\,sin\varphi&cos\,\theta\\ cos\,\theta\,cos\varphi&0 \end{vmatrix}-j\begin{vmatrix} -sin\,\theta\,cos\varphi&cos\,\theta\\ -cos\,\theta\,sin\varphi&0 \end{vmatrix}+k\begin{vmatrix} -sin\,\theta\,cos\varphi&-sin\,\theta\,sin\varphi\\ -cos\,\theta\,sin\varphi&cos\,\theta\,cos\varphi \end{vmatrix}=

=icos2θcosφjcosθsinφksinθcosθ=(cos2θcosφ,cosθsinφ,sinθcosθ),=-i\,cos^2\theta\,cos\,\varphi-j\,cos\,\theta\,sin\,\varphi-ksin\,\theta\,cos\,\theta=(-\,cos^2\theta\,cos\,\varphi,-\,cos\,\theta\,sin\,\varphi,-sin\,\theta\,cos\,\theta),

The second fundamental form is:

II=Ldu2+2Mdudv+Ndv2,II=Ldu^2+2Mdudv+Ndv^2,

where L=(ru,Nu),M=(rv,Nu),N=(rv,Nv)L=-(r_u,\text{N}_u),M=-(r_v,\text{N}_u),N=-(r_v,\text{N}_v)

The Weingarten matrix is: (MFLGEGF2LFMEEGF2NFMGEGF2MFNEEGF2)\begin{pmatrix} \frac{MF-LG}{EG-F^2} & \frac{LF-ME}{EG-F^2} \\ \frac{NF-MG}{EG-F^2} & \frac{MF-NE}{EG-F^2} \end{pmatrix}

b). ru=(sinhucosh2ucosv,sinhucosh2usinv,1cosh2u),r_{u}=(-\frac{sinh\,u}{cosh^2\,u}cos\,v,-\frac{sinh\,u}{cosh^2\,u}sin\,v,\frac{1}{cosh^2u}),

rv=(sechusinv,sechucosv,0),r_{v}=(-sech\,u\,sin\,v,sech\,u\,cos\,v,0),

E=(ru,ru)=sinh2ucosh4ucos2v+1cosh4u=cos2vcosh2uE=(r_u,r_u)=\frac{sinh^2\,u}{cosh^4\,u}cos^2\,v+\frac{1}{cosh^4\,u}=\frac{cos^2v}{cosh^2u} ,

F=0,G=(rv,rv)=1cosh2u;F=0, G=(r_v,r_v)=\frac{1}{cosh^2u};

I=cos2vcosh2udu+1cosh2udvI=\frac{cos^2v}{cosh^2u}du+\frac{1}{cosh^2u}dv .

N=ijksinhucosh2ucosvsinhucosh2usinv1cosh2usechusinvsechucosv0=isinhucosh2usinv1cosh2usechucosv0jsinhucosh2ucosv1cosh2usechusinv0+ksinhucosh2ucosvsinhucosh2usinvsechusinvsechucosv=\text{N}=\begin{vmatrix} i & j &k \\ -\frac{sinh\,u}{cosh^2\,u}cos\,v&-\frac{sinh\,u}{cosh^2\,u}sin\,v&\frac{1}{cosh^2u}\\ -sech\,u\,sin\,v&sech\,u\,cos\,v&0 \end{vmatrix}=i\begin{vmatrix} -\frac{sinh\,u}{cosh^2\,u}sin\,v&\frac{1}{cosh^2u}\\ sech\,u\,cos\,v&0 \end{vmatrix}-j\begin{vmatrix} -\frac{sinh\,u}{cosh^2\,u}cos\,v&\frac{1}{cosh^2u}\\ -sech\,u\,sin\,v&0 \end{vmatrix}+k\begin{vmatrix} -\frac{sinh\,u}{cosh^2\,u}cos\,v&-\frac{sinh\,u}{cosh^2\,u}sin\,v\\ -sech\,u\,sin\,v&sech\,u\,cos\,v \end{vmatrix}=

N=icosvcosh3u+jsinvcosh3uksinhucosh3u\text{N}=i\frac{cos\,v}{cosh^3u}+j\frac{sin\,v}{cosh^3u}-k\frac{sinh\,u}{cosh^3\,u} .

The second fundamental form is:

II=Ldu2+2Mdudv+Ndv2,II=Ldu^2+2Mdudv+Ndv^2,

where L=(ru,Nu),M=(rv,Nu),N=(rv,Nv).L=-(r_u,\text{N}_u),M=-(r_v,\text{N}_u),N=-(r_v,\text{N}_v).

The Weingarten Matrix is: (MFLGEGF2LFMEEGF2NFMGEGF2MFNEEGF2)\begin{pmatrix} \frac{MF-LG}{EG-F^2} & \frac{LF-ME}{EG-F^2} \\ \frac{NF-MG}{EG-F^2} & \frac{MF-NE}{EG-F^2} \end{pmatrix} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment