The first moment of X is
"\\int udv=uv-\\int vdu"
"u={x\\over\\theta}, du={1\\over\\theta}dx, v=-\\theta e^{-x\/ \\theta}"
"\\int {x \\over \\theta}e^{-x \/ \\theta}dx=-xe^{-x\/\\theta}+\\int e^{-x\/\\theta}dx=-xe^{-x\/\\theta}-\\theta e^{-x\/\\theta}+C"
"\\mu_1=E(X)=\\displaystyle\\intop_{0}^\\infin{x \\over \\theta}e^{-x \/ \\theta}dx=[-xe^{-x\/\\theta}-\\theta e^{-x\/\\theta}]\\begin{matrix}\n \\infin \\\\\n 0\n\\end{matrix}=\\theta"
Equating the sample first moment to the population first moment:
"\\theta={1\\over n}\\displaystyle\\sum_{i=1}^nX_i=\\bar{X}"
Therefore,
"{1\\over n}\\displaystyle\\sum_{i=1}^nX_i=\\bar{X}" 2 is an unbiased estimator of "\\theta".
Comments
Leave a comment