Let X1, X2, ...,Xn X , X be a random sample from a distribution with density function
f(x,θ) = {θ^-1 e^-x/θ, if X>0
{0 , otherwise
Show that X=n^-1 ∑Xi is unbiased for θ .
1
Expert's answer
2019-04-04T10:01:35-0400
The first moment of X is
μ1=E(X)=0∫∞θxe−x/θdx
∫udv=uv−∫vdu
u=θx,du=θ1dx,v=−θe−x/θ
∫θxe−x/θdx=−xe−x/θ+∫e−x/θdx=−xe−x/θ−θe−x/θ+C
μ1=E(X)=0∫∞θxe−x/θdx=[−xe−x/θ−θe−x/θ]∞0=θ
Equating the sample first moment to the population first moment:
Comments
Leave a comment