Since
and
Setting "\\widehat{\\mu}_1=\\mu" and "\\widehat{\\mu}_2=\\sigma^2+\\mu^2" we obtain the moment estimators
"\\widehat{\\theta}=(\\bar{X}, {1 \\over n}\\displaystyle\\sum_{i=1}^n(X_i-\\bar{X})^2)=(\\bar{X}, {n-1 \\over n}S^2)"
"np(1-p)={1 \\over n}\\displaystyle\\sum_{i=1}^n(X_i-\\bar{X})^2"
"1-p={{1 \\over n}\\displaystyle\\sum_{i=1}^n(X_i-\\bar{X})^2 \\over \\bar{X}}={n-1 \\over n}S^2\/\\bar{X}"
and
The estimator "\\widehat{p}" is in the range of (0, 1).
But "\\widehat{k}" may not be an integer.
It can be improved by an estimator that is "\\widehat{k}" rounded to the nearest positive integer.
Comments
Leave a comment