i) For random variable X:
E(aX+b)=aE(x)+b For random variables X1, X2
E(X1+X2)=E(X1)+E(X2) Then
E(2X1+X2−5)=2E(X1)+E(X2)−5=2(4)−2−5=1
E(2X1+X2−5)=2(4)−2−5=1
ii) For random variable X:
Var(aX+b)=a2Var(X) If X1, X2 are independent, then
Var(X1+X2)=Var(X1)+Var(X2) Then
Var(2X1+X2−5)=22Var(X1)+Var(X2)
Var(2X1+X2−5)=4(9)+5=41
Comments