Question #87357
If a random variable X1 has mean 4 and variance 9, while the random variable X2
has mean − 2and variance 5, and the two are independent, find
i) E(2X1+ X2- 5)
ii) Var(2X1+ X2- 5)
1
Expert's answer
2019-04-01T12:54:13-0400

i) For random variable X:


E(aX+b)=aE(x)+bE(aX+b)=aE(x)+b

For random variables X1, X2


E(X1+X2)=E(X1)+E(X2)E(X1+X2)=E(X1)+E(X2)

Then


E(2X1+X25)=2E(X1)+E(X2)5=2(4)25=1E(2X1+X2-5)=2E(X1)+E(X2)-5=2(4)-2-5=1


E(2X1+X25)=2(4)25=1E(2X1+X2-5)=2(4)-2-5=1

ii) For random variable X:


Var(aX+b)=a2Var(X)Var(aX+b)=a^2Var(X)

If X1, X2 are independent, then


Var(X1+X2)=Var(X1)+Var(X2)Var(X1+X2)=Var(X1)+Var(X2)

Then


Var(2X1+X25)=22Var(X1)+Var(X2)Var(2X1+X2-5)=2^2 Var(X1)+Var(X2)


Var(2X1+X25)=4(9)+5=41Var(2X1+X2-5)=4(9)+5=41






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS