μ=∫0∞2xe−2xdx=1/2σ2=∫0∞2(x−1/2)2e−2xdx=1/4P(∣X−μ∣>=1)=1−P(∣X−μ∣<1)=1−∫03/22e−2xdx=e−3=0.0498\mu=\int_{0}^{\infty}2xe^{-2x}dx=1/2\\ \sigma^{2}=\int_0^{\infty}2(x-1/2)^{2}e^{-2x}dx=1/4\\ P(|X-\mu|>=1)=1-P(|X-\mu|<1)=1-\int_{0}^{3/2}2e^{-2x}dx=e^{-3}=0.0498\\μ=∫0∞2xe−2xdx=1/2σ2=∫0∞2(x−1/2)2e−2xdx=1/4P(∣X−μ∣>=1)=1−P(∣X−μ∣<1)=1−∫03/22e−2xdx=e−3=0.0498
By Chebyshev's inequality: P(∣X−μ∣>=1)=P(∣X−μ∣>=2σ)<=1/4=0.25.P(|X-\mu|>=1)=P(|X-\mu|>=2\sigma)<=1/4=0.25.P(∣X−μ∣>=1)=P(∣X−μ∣>=2σ)<=1/4=0.25.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments