Question #87358
For the random variable X with density function
f(x)=[2e^-2x ; x≥0
[0 ; <0
Find
i) the mean μand variance σ²;
ii) P[|x–μ|≥1] .
Use Chebyshev’s inequality to obtain an upper bound on P[ |X − μ| ≥1]and compare
with the result obtained in part (ii).
1
Expert's answer
2019-04-02T11:34:01-0400

μ=02xe2xdx=1/2σ2=02(x1/2)2e2xdx=1/4P(Xμ>=1)=1P(Xμ<1)=103/22e2xdx=e3=0.0498\mu=\int_{0}^{\infty}2xe^{-2x}dx=1/2\\ \sigma^{2}=\int_0^{\infty}2(x-1/2)^{2}e^{-2x}dx=1/4\\ P(|X-\mu|>=1)=1-P(|X-\mu|<1)=1-\int_{0}^{3/2}2e^{-2x}dx=e^{-3}=0.0498\\

By Chebyshev's inequality: P(Xμ>=1)=P(Xμ>=2σ)<=1/4=0.25.P(|X-\mu|>=1)=P(|X-\mu|>=2\sigma)<=1/4=0.25.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS