"\\mu=\\int_{0}^{\\infty}2xe^{-2x}dx=1\/2\\\\\n\\sigma^{2}=\\int_0^{\\infty}2(x-1\/2)^{2}e^{-2x}dx=1\/4\\\\\nP(|X-\\mu|>=1)=1-P(|X-\\mu|<1)=1-\\int_{0}^{3\/2}2e^{-2x}dx=e^{-3}=0.0498\\\\"
By Chebyshev's inequality: "P(|X-\\mu|>=1)=P(|X-\\mu|>=2\\sigma)<=1\/4=0.25."
Comments
Leave a comment