Suppose that we will take a random sample of size n from a population having mean u and standard deviation o. For each of
the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean X:
a. μ = 10, o=2, n = 25
b. μ=500, o=.5, n = 100
C. μ=3, o =., n=4
d. μ= 100, o=1, n = 1,600
What will I do here if the mean and stdv is already given? TT sorry I am confused
a.
"\\mu_{\\bar{X}}=\\mu=10""Var(\\bar{X})=\\sigma_{\\bar{X}}^2=\\dfrac{\\sigma^2}{n}=\\dfrac{2^2}{25}=0.16"
"\\sigma_{\\bar{X}}=\\dfrac{\\sigma}{\\sqrt{n}}=\\dfrac{2}{\\sqrt{25}}=0.4"
b.
"\\mu_{\\bar{X}}=\\mu=500""Var(\\bar{X})=\\sigma_{\\bar{X}}^2=\\dfrac{\\sigma^2}{n}=\\dfrac{0.5^2}{100}=0.0025"
"\\sigma_{\\bar{X}}=\\dfrac{\\sigma}{\\sqrt{n}}=\\dfrac{0.5}{\\sqrt{100}}=0.05"
c.
"\\mu_{\\bar{X}}=\\mu=3""Var(\\bar{X})=\\sigma_{\\bar{X}}^2=\\dfrac{\\sigma^2}{n}=\\dfrac{0.1^2}{4}=0.0025"
"\\sigma_{\\bar{X}}=\\dfrac{\\sigma}{\\sqrt{n}}=\\dfrac{0.1}{\\sqrt{4}}=0.05"
d.
"\\mu_{\\bar{X}}=\\mu=100""Var(\\bar{X})=\\sigma_{\\bar{X}}^2=\\dfrac{\\sigma^2}{n}=\\dfrac{1^2}{1600}=0.000625"
"\\sigma_{\\bar{X}}=\\dfrac{\\sigma}{\\sqrt{n}}=\\dfrac{1}{\\sqrt{1600}}=0.025"
Comments
Leave a comment