Question #336134

Suppose that we will take a random sample of size n from a population having mean u and standard deviation o. For each of



the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean X:




a. μ = 10, o=2, n = 25



b. μ=500, o=.5, n = 100



C. μ=3, o =., n=4



d. μ= 100, o=1, n = 1,600




What will I do here if the mean and stdv is already given? TT sorry I am confused

1
Expert's answer
2022-05-02T15:15:18-0400

a.

μXˉ=μ=10\mu_{\bar{X}}=\mu=10

Var(Xˉ)=σXˉ2=σ2n=2225=0.16Var(\bar{X})=\sigma_{\bar{X}}^2=\dfrac{\sigma^2}{n}=\dfrac{2^2}{25}=0.16

σXˉ=σn=225=0.4\sigma_{\bar{X}}=\dfrac{\sigma}{\sqrt{n}}=\dfrac{2}{\sqrt{25}}=0.4

b.

μXˉ=μ=500\mu_{\bar{X}}=\mu=500

Var(Xˉ)=σXˉ2=σ2n=0.52100=0.0025Var(\bar{X})=\sigma_{\bar{X}}^2=\dfrac{\sigma^2}{n}=\dfrac{0.5^2}{100}=0.0025

σXˉ=σn=0.5100=0.05\sigma_{\bar{X}}=\dfrac{\sigma}{\sqrt{n}}=\dfrac{0.5}{\sqrt{100}}=0.05

c.

μXˉ=μ=3\mu_{\bar{X}}=\mu=3

Var(Xˉ)=σXˉ2=σ2n=0.124=0.0025Var(\bar{X})=\sigma_{\bar{X}}^2=\dfrac{\sigma^2}{n}=\dfrac{0.1^2}{4}=0.0025

σXˉ=σn=0.14=0.05\sigma_{\bar{X}}=\dfrac{\sigma}{\sqrt{n}}=\dfrac{0.1}{\sqrt{4}}=0.05

d.

μXˉ=μ=100\mu_{\bar{X}}=\mu=100

Var(Xˉ)=σXˉ2=σ2n=121600=0.000625Var(\bar{X})=\sigma_{\bar{X}}^2=\dfrac{\sigma^2}{n}=\dfrac{1^2}{1600}=0.000625

σXˉ=σn=11600=0.025\sigma_{\bar{X}}=\dfrac{\sigma}{\sqrt{n}}=\dfrac{1}{\sqrt{1600}}=0.025


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS