Question #336128

If Scores are normally distributed with a mean of 30 and a standard deviation of 5. What percent score is.



a.) Equal or greater than 30?



b.) Equal or greater than 37?



c.) From 28 to 34?

1
Expert's answer
2022-05-02T15:39:43-0400

We have a normal distribution, μ=30,σ=5.\mu=30, \sigma=5.

Let's convert it to the standard normal distribution,

z=xμσ.z=\cfrac{x-\mu}{\sigma}.


a) z1=30305=0;P(X30)=P(Z0)==1P(Z<0)==10.5=0.5==50% (from z-table).\text{a) }z_1=\cfrac{30-30}{5}=0; \\P(X\ge30)=P(Z\ge0)=\\ =1-P(Z<0)=\\ =1-0.5=0.5=\\ =50\%\text{ (from z-table)}.


b) z2=37305=1.40;P(X37)=P(Z1.40)==1P(Z<1.40)==10.9192=0.0808==8.08% (from z-table).\text{b) }z_2=\cfrac{37-30}{5}=1.40; \\P(X\ge37)=P(Z\ge1.40)=\\ =1-P(Z<1.40)=\\ =1-0.9192=0.0808=\\ =8.08\%\text{ (from z-table)}.


c) z3=28305=0.40;z4=34305=0.80;P(28<X<34)==P(0.40<Z<0.80)==P(Z<0.80)P(Z<0.40)==0.78810.3446=0.4435==44.35% (from z-table).\text{c) }z_3=\cfrac{28-30}{5}=-0.40;\\ z_4=\cfrac{34-30}{5}=0.80;\\ P(28<X<34)=\\ =P(-0.40<Z<0.80)=\\ =P(Z<0.80)-P(Z<-0.40)=\\ =0.7881-0.3446=0.4435=\\ =44.35\%\text{ (from z-table)}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS