Answer to Question #336064 in Statistics and Probability for Arian

Question #336064

Assuming that the samples come from normal distributions, find the margin of error E given the following.




2. n=150, x-=98, s=9.90, 95% confidence.



3. n=350, x-=125, s=11.18, 99% confidence.



4. n=500, x-=236, s=15.36, 90% confidence.



5. n=785, x-=459, s=21.42, 99% confidence.

1
Expert's answer
2022-05-05T10:35:36-0400

2. The critical value for "\\alpha = 0.05,df=n-1=149" degrees of freedom is "t_c = z_{1-\\alpha\/2; n-1} = 1.976013."

Margin of Error: "E=t_c\\times\\dfrac{s}{\\sqrt{n}}=1.976013 \\times \\dfrac{9.9}{\\sqrt{150}}= 1.5973"


3. The critical value for "\\alpha = 0.01,df=n-1=349" degrees of freedom is "t_c = z_{1-\\alpha\/2; n-1} = 2.58999."

Margin of Error: "E=t_c\\times\\dfrac{s}{\\sqrt{n}}=2.58999\\times \\dfrac{11.18}{\\sqrt{350}}= 1.5478"


4. The critical value for "\\alpha = 0.10,df=n-1=499" degrees of freedom is "t_c = z_{1-\\alpha\/2; n-1} = 1.647913."

Margin of Error: "E=t_c\\times\\dfrac{s}{\\sqrt{n}}=1.647913 \\times \\dfrac{15.36}{\\sqrt{500}}=1.1320"


5. The critical value for "\\alpha = 0.01,df=n-1=784" degrees of freedom is "t_c = z_{1-\\alpha\/2; n-1} = 2.582115."

Margin of Error: "E=t_c\\times\\dfrac{s}{\\sqrt{n}}=2.582115 \\times \\dfrac{21.42}{\\sqrt{785}}= 1.9741"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS