2. The critical value for α = 0.05 , d f = n − 1 = 149 \alpha = 0.05,df=n-1=149 α = 0.05 , df = n − 1 = 149 degrees of freedom is t c = z 1 − α / 2 ; n − 1 = 1.976013. t_c = z_{1-\alpha/2; n-1} = 1.976013. t c = z 1 − α /2 ; n − 1 = 1.976013.
Margin of Error: E = t c × s n = 1.976013 × 9.9 150 = 1.5973 E=t_c\times\dfrac{s}{\sqrt{n}}=1.976013 \times \dfrac{9.9}{\sqrt{150}}= 1.5973 E = t c × n s = 1.976013 × 150 9.9 = 1.5973
3. The critical value for α = 0.01 , d f = n − 1 = 349 \alpha = 0.01,df=n-1=349 α = 0.01 , df = n − 1 = 349 degrees of freedom is t c = z 1 − α / 2 ; n − 1 = 2.58999. t_c = z_{1-\alpha/2; n-1} = 2.58999. t c = z 1 − α /2 ; n − 1 = 2.58999.
Margin of Error: E = t c × s n = 2.58999 × 11.18 350 = 1.5478 E=t_c\times\dfrac{s}{\sqrt{n}}=2.58999\times \dfrac{11.18}{\sqrt{350}}= 1.5478 E = t c × n s = 2.58999 × 350 11.18 = 1.5478
4. The critical value for α = 0.10 , d f = n − 1 = 499 \alpha = 0.10,df=n-1=499 α = 0.10 , df = n − 1 = 499 degrees of freedom is t c = z 1 − α / 2 ; n − 1 = 1.647913. t_c = z_{1-\alpha/2; n-1} = 1.647913. t c = z 1 − α /2 ; n − 1 = 1.647913.
Margin of Error: E = t c × s n = 1.647913 × 15.36 500 = 1.1320 E=t_c\times\dfrac{s}{\sqrt{n}}=1.647913 \times \dfrac{15.36}{\sqrt{500}}=1.1320 E = t c × n s = 1.647913 × 500 15.36 = 1.1320
5. The critical value for α = 0.01 , d f = n − 1 = 784 \alpha = 0.01,df=n-1=784 α = 0.01 , df = n − 1 = 784 degrees of freedom is t c = z 1 − α / 2 ; n − 1 = 2.582115. t_c = z_{1-\alpha/2; n-1} = 2.582115. t c = z 1 − α /2 ; n − 1 = 2.582115.
Margin of Error: E = t c × s n = 2.582115 × 21.42 785 = 1.9741 E=t_c\times\dfrac{s}{\sqrt{n}}=2.582115 \times \dfrac{21.42}{\sqrt{785}}= 1.9741 E = t c × n s = 2.582115 × 785 21.42 = 1.9741
Comments