Let's define the random variable Y as the number of your correct answers to the 10 questions you answer randomly. Then your total score will be X=Y+10. First, let's find the PMF of Y. For each question, your success probability is 1/4. Hence, you perform 10 independent Bernoulli 1/4 trials and Y is the number of successes. Thus, we conclude
Py=(y=(y10)(1/4)y(3/4)10−y
for y=0,1,2,3...10
Py=0 otherwise
Now we need to find the PMF of X=Y+10. First note that Rx={10,11,12...20}
We can write
Px(10)=P(x=10)=P(y+10=10)=P(y=0)=(010)(1/4)0(3/4)10−0=(3/4)10P(x=11)=P(y+10=11)=P(y=1)=(101)(1/4)1(3/4)10−1=10(1/4)(3/4)9
In general for
k∈Rx={10,11,12...20}
Px(k)=P(x=k)=P(y+10=k)=P(y=k−10)=(k−1010)(1/4)k−10(3/4)20−k
For k={10,11,12...20}
Px(k)=0
Otherwise
In order to calculate P(X>15), we know we should consider y=6,7,8,9,10
Py(y)=(y10)(1/4)y(3/4)10−y
For y=6,7,8,9,10
Py(y)=0 otherwise
Px(k)=(k−1010)(1/4)k−10(3/4)20−k
For k=16,17,18,19,20
Px(k)=0 otherwise
P(X>15)=Px(16)+Px(17)+Px(18)+Px(19)+Px(20)=(610)(1/4)6(3/4)4+(710)(1/4)7(3/4)3+(810)(1/4)8(3/4)2+(910)(1/4)9(3/4)1+(1010)(1/4)10(3/4)0=0.019727
Comments
Leave a comment