Question #323832

 Roll a fair die repeatedly. Let X be the number of 6’s in the first 10 rolls and let Y the number of rolls needed to obtain a 3.

(a) Write down the probability mass function of X.

(b) Write down the probability mass function of Y .

(c) Find an expression for P(X ≥ 6).

(d) Find an expression for P(Y > 10).



1
Expert's answer
2022-04-16T04:13:41-0400

a) According to the binomial distribution:

P(x=k)=Cnkpk(1p)nk,P(x=k)=C_n^kp^k(1-p)^{n-k},

where x = k - number of 6'th that had appeared in 10 rolls,

n = 10 - number of rolls,

p = 1 / 6 - probability that 6'th will appear in one separate roll

P(k)=C10k(16)k(56)10kP(k)=C_{10}^k(\frac{1}{6})^k(\frac{5}{6})^{10-k}


b) Probability of appearing 3 in one separate roll is 1 / 6 = 0.167,

probability of appearing it in n rolls one time is Cn1p(1p)n1=np(1p)n1C_n^1p(1-p)^{n-1}=np(1-p)^{n-1}

P(y=k)=k0.1670.833k1P(y=k)=k\cdot0.167\cdot0.833^{k-1}


c) P(x6)=1P(x5)=1k=05Cnkpk(1p)10k=10.83310100.16710.8339109120.16720.833810981230.16730.83371098712340.16740.8336109876123450.16750.8335==0.8391392780.3224938850.2909413620.155541280.0545701550.013128282==0.0024643140.25%c)\space P(x\ge6)=1-P(x\le5)=\\ 1-\sum_{k=0}^{5}C_{n}^kp^k(1-p)^{10-k}=\\ 1-0.833^{10}-10\cdot0.167^10.833^9-\\ -\frac{10\cdot9}{1\cdot2}\cdot0.167^20.833^8-\frac{10\cdot9\cdot8}{1\cdot2\cdot3}\cdot0.167^30.833^7-\\ -\frac{10\cdot9\cdot8\cdot7}{1\cdot2\cdot3\cdot4}\cdot0.167^40.833^6-\frac{10\cdot9\cdot8\cdot7\cdot6}{1\cdot2\cdot3\cdot4\cdot5}\cdot0.167^50.833^5=\\ =0.839139278-0.322493885-0.290941362-\\ -0.15554128-0.054570155-0.013128282=\\ =0.002464314\approx0.25\%


d) P(y>10)=0.167k=11k0.833k1d)\space P(y > 10)=0.167\sum_{k=11}^{∞}k\cdot0.833^{k-1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS