The number of claims per month paid by an insurance company is modelled by a random variable N with p.m.f satisfying the relation
p(n + 1) =
1/3p(n), n = 0,1,2,...
where p(n) is the probability that n claims are filed during a given month
(a) Find p(0).
(b) Calculate the probability of at least one claim during a particular month given that there have been at most four claims during the month.
"a:\\\\p\\left( n+1 \\right) =\\frac{1}{3}p\\left( n \\right) \\Rightarrow p\\left( n \\right) =\\frac{p\\left( 0 \\right)}{3^n}\\\\\\sum_{n=0}^{\\infty}{p\\left( n \\right) =1}\\Rightarrow p\\left( 0 \\right) \\sum_{n=0}^{\\infty}{\\left( \\frac{1}{3} \\right) ^n}=1\\Rightarrow p\\left( 0 \\right) =\\frac{1}{\\frac{1}{1-\\frac{1}{3}}}=\\frac{2}{3}\\\\b:\\\\P\\left( X\\geqslant 1|X\\leqslant 4 \\right) =\\frac{P\\left( 1\\leqslant X\\leqslant 4 \\right)}{P\\left( X\\leqslant 4 \\right)}=\\frac{\\sum_{n=1}^4{\\frac{2}{3}\\cdot \\frac{1}{3^n}}}{\\sum_{n=0}^4{\\frac{2}{3}\\cdot \\frac{1}{3^n}}}=\\frac{\\frac{2}{3}\\left( \\frac{1}{3}+\\frac{1}{3^2}+\\frac{1}{3^3}+\\frac{1}{3^4} \\right)}{\\frac{2}{3}\\left( 1+\\frac{1}{3}+\\frac{1}{3^2}+\\frac{1}{3^3}+\\frac{1}{3^4} \\right)}=0.330579"
Comments
Leave a comment