Each of the 50 students in class belongs to exactly one of the four groups A, B, C, or D. The membership numbers for the four groups are as follows: A: 5, B: 10, C: 15, D: 20. First, choose one of the 50 students at random and let X be the size of that student’s group. Next, choose one of the four groups at random and let Y be its size. (Recall: all random choices are with equal probability, unless otherwise specified.)
(a) Write down the probability mass functions for X and Y . (b) Compute E[X] and E[Y ] . (c) Compute V (X) and V (Y ). (d) Assume you have s students divided into n groups with membership numbers s1,s2,··· ,sn and again X is the size of the group of a randomly chosen student, while Y is the size of the randomly chosen group. Let E[Y ] = µ and V (Y ) = σ2. Express E[X] with s,n,µ, and σ.
"a)\\space P(X=5)=\\frac{5}{5+10+15+20}=0.1\\\\\nP(X=10)=\\frac{10}{5+10+15+20}=0.2\\\\\nP(X=15)=\\frac{15}{5+10+15+20}=0.3\\\\\nP(X=20)=\\frac{20}{5+10+15+20}=0.4"
For all other values of X P(X) = 0
Probability of selecting one group out of 4 is 1 / 4 = 0.25
"P(Y=5)=0.25\\\\\nP(Y=10)=0.25\\\\\nP(Y=15)=0.25\\\\\nP(Y=20)=0.25"
For all other values of Y P(Y) = 0
"b)\\space\\Epsilon[X]=0.1\\cdot5+0.2\\cdot10+\\\\\n+0.3\\cdot15+0.4\\cdot20=15\\\\\n\\Epsilon[Y]=0.25\\cdot(5+10+15+20)=12.5"
"c)\\space V(X)=\\frac{1}{4-1}(0.1\\cdot(5-15)^2+0.2\\cdot(10-15)^2+\\\\\n0.3\\cdot(15-15)^2+0.4\\cdot(20-15)^2)]\\approx\\\\\n\\approx8.333\\\\\nV(Y)=\\frac{1}{3}\\cdot0.25\\cdot(5+10+15+20)\\approx4.167"
"d)\\space \\Epsilon[X]=\\sum_{k=1}^{n}\\frac{s_k}{s}s_k=\\frac{1}{s}\\sum_{k=1}^{n}s_k^2\\\\\n\\Epsilon[Y]=\\sum_{k=1}^{n}\\frac{1}{n}s_k=\\frac{1}{n}\\sum_{k=1}^{n}s_k=\\frac{s}{n}\\\\\nV[Y]=\\frac{1}{n-1}\\sum_{k=1}^{n}\\frac{1}{n}(s_k-\\frac{s}{n})^2=\\\\\n=\\frac{1}{n(n-1)}\\sum_{k=1}^{n}(s_k^2-\\frac{2s_ks}{n}+\\frac{s^2}{n^2})=\\\\\n=\\frac{1}{n(n-1)}(s\\Epsilon[X]-\\frac{2s^2}{n}+\\frac{s^2}{n})=\\\\\n=\\frac{1}{n(n-1)}(s\\Epsilon[X]-\\frac{s^2}{n})=\\sigma^2\\Rarr\\\\\n\\Rarr\\Epsilon[X]=\\frac{1}{s}(n(n-1)\\sigma^2+\\frac{s^2}{n})=\\\\\n=\\frac{n(n-1)}{s}\\sigma^2+\\mu"
Comments
Leave a comment