a) P(X=5)=5+10+15+205=0.1P(X=10)=5+10+15+2010=0.2P(X=15)=5+10+15+2015=0.3P(X=20)=5+10+15+2020=0.4
For all other values of X P(X) = 0
Probability of selecting one group out of 4 is 1 / 4 = 0.25
P(Y=5)=0.25P(Y=10)=0.25P(Y=15)=0.25P(Y=20)=0.25
For all other values of Y P(Y) = 0
b) E[X]=0.1⋅5+0.2⋅10++0.3⋅15+0.4⋅20=15E[Y]=0.25⋅(5+10+15+20)=12.5
c) V(X)=4−11(0.1⋅(5−15)2+0.2⋅(10−15)2+0.3⋅(15−15)2+0.4⋅(20−15)2)]≈≈8.333V(Y)=31⋅0.25⋅(5+10+15+20)≈4.167
d) E[X]=∑k=1nssksk=s1∑k=1nsk2E[Y]=∑k=1nn1sk=n1∑k=1nsk=nsV[Y]=n−11∑k=1nn1(sk−ns)2==n(n−1)1∑k=1n(sk2−n2sks+n2s2)==n(n−1)1(sE[X]−n2s2+ns2)==n(n−1)1(sE[X]−ns2)=σ2⇒⇒E[X]=s1(n(n−1)σ2+ns2)==sn(n−1)σ2+μ
Comments