9. The probability density function for a diameter of a drilled hole in millimeters is f(x) =
10e^−10(x−5)
for x > 5 mm. Although the target diameter is 5 mm, vibrations, tool wear,
and other nuisances produce diameters larger than 5 mm.
a) Determine the mean and variance of the diameter of the holes. [Hint: Use
integration by parts.]
b) Determine the probability that the hole exceeds 5.1 mm.
"EX=\\int_5^{+\\infty}{x\\cdot 10e^{-10\\left( x-5 \\right)}dx}=\\\\=-xe^{-10\\left( x-5 \\right)}|_{5}^{+\\infty}+\\int_5^{+\\infty}{e^{-10\\left( x-5 \\right)}dx}=\\\\=5+\\frac{1}{10}=5.1\\\\EX^2=\\int_5^{+\\infty}{x^2\\cdot 10e^{-10\\left( x-5 \\right)}dx}=\\\\=-x^2e^{-10\\left( x-5 \\right)}|_{5}^{+\\infty}+\\int_5^{+\\infty}{2xe^{-10\\left( x-5 \\right)}dx}=\\\\=25+\\frac{1}{5}EX=25+\\frac{1}{5}\\cdot 5.1=26.02\\\\DX=EX^2-\\left( EX \\right) ^2=26.02-5.1^2=0.01\\\\b:\\\\P\\left( X>5.1 \\right) =\\int_{5.1}^{+\\infty}{10e^{-10\\left( x-5 \\right)}dx}=\\\\=-e^{-10\\left( x-5 \\right)}|_{5.1}^{+\\infty}=e^{-1}"
Comments
Leave a comment