8. Suppose the probability density function of the length of computer cables is f(x) = 0.1
from 1200 to 1210 millimeters.
a) Determine the mean and standard deviation of the cable length.
b) If the length specifications are 1195 < x < 1205, what proportions of cables are
within specifications?
"a:\\\\EX=\\int_{1200}^{1210}{xf\\left( x \\right) dx}=\\int_{1200}^{1210}{x\\cdot 0.1dx}=0.05\\left( 1210^2-1200^2 \\right) =1205\\\\EX^2=\\int_{1200}^{1210}{x^2f\\left( x \\right) dx}=\\int_{1200}^{1210}{x^2\\cdot 0.1dx}=\\frac{0.1}{3}\\left( 1210^3-1200^3 \\right) =1.45203\\times 10^6\\\\DX=EX^2-\\left( EX \\right) ^2=1.45203\\times 10^6-1205^2=8.33333\\\\\\sigma X=\\sqrt{DX}=\\sqrt{8.33333}=2.88675\\\\b:\\\\P\\left( 1195<X<1205 \\right) =P\\left( 1200<X<1205 \\right) =\\int_{1200}^{1205}{0.1dx}=0.5\\\\"
Comments
Leave a comment