3. Suppose that X has a discrete uniform distribution on the integers 0 through 9.
Determine the mean, variance, and standard deviation of the random variable Y = 5X
and compare to the corresponding results for X.
We have
"EX=\\sum{x_ip_i}=0\\cdot 0.1+1\\cdot 0.1+...+9\\cdot 0.1=4.5\\\\EX^2=\\sum{{x_i}^2p_i}=0^2\\cdot 0.1+1^2\\cdot 0.1+...+9^2\\cdot 0.1=28.5\\\\DX=EX^2-\\left( EX \\right) ^2=28.5-4.5^2=8.25\\\\\\sigma X=\\sqrt{DX}=\\sqrt{8.25}=2.87228\\\\EY=E\\left( 5X \\right) =5EX=5\\cdot 4.5=22.5\\\\DY=D\\left( 5X \\right) =25DX=25\\cdot 8.25=206.25\\\\\\sigma Y=\\sqrt{DY}=\\sqrt{206.25}=14.3614"
Comments
Leave a comment