3. Suppose that X has a discrete uniform distribution on the integers 0 through 9.
Determine the mean, variance, and standard deviation of the random variable Y = 5X
and compare to the corresponding results for X.
We have
EX=∑xipi=0⋅0.1+1⋅0.1+...+9⋅0.1=4.5EX2=∑xi2pi=02⋅0.1+12⋅0.1+...+92⋅0.1=28.5DX=EX2−(EX)2=28.5−4.52=8.25σX=DX=8.25=2.87228EY=E(5X)=5EX=5⋅4.5=22.5DY=D(5X)=25DX=25⋅8.25=206.25σY=DY=206.25=14.3614EX=\sum{x_ip_i}=0\cdot 0.1+1\cdot 0.1+...+9\cdot 0.1=4.5\\EX^2=\sum{{x_i}^2p_i}=0^2\cdot 0.1+1^2\cdot 0.1+...+9^2\cdot 0.1=28.5\\DX=EX^2-\left( EX \right) ^2=28.5-4.5^2=8.25\\\sigma X=\sqrt{DX}=\sqrt{8.25}=2.87228\\EY=E\left( 5X \right) =5EX=5\cdot 4.5=22.5\\DY=D\left( 5X \right) =25DX=25\cdot 8.25=206.25\\\sigma Y=\sqrt{DY}=\sqrt{206.25}=14.3614EX=∑xipi=0⋅0.1+1⋅0.1+...+9⋅0.1=4.5EX2=∑xi2pi=02⋅0.1+12⋅0.1+...+92⋅0.1=28.5DX=EX2−(EX)2=28.5−4.52=8.25σX=DX=8.25=2.87228EY=E(5X)=5EX=5⋅4.5=22.5DY=D(5X)=25DX=25⋅8.25=206.25σY=DY=206.25=14.3614
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments