Suppose that contamination particle size (in micrometers) can be modeled as f(x) =
2x^−3
for x > 1. Determine the mean and standard deviation of X.
Mean: "E(X)=\\int_{-\\infty}^{+\\infty}xf(x)dx=2\\int_{1}^{+\\infty}x^{-2}dx=-{\\frac 2 x}|_1^{+\\infty}=2"
Variance: "V(X)=E(X^2)-E^2(X)=\\int_{-\\infty}^{+\\infty}x^2f(x)dx-4=2\\int_{1}^{+\\infty}x^{-1}dx-4=2ln(x)|_1^{+\\infty}-4=+\\infty-4=+\\infty"
Standard deviation: "\\sigma(X)=\\sqrt{V(X)}=+\\infty"
Comments
Leave a comment