Question #309358

QUESTION THREE

In a Competitive examination of 5000 students, the marks of the examinees in statistics were found to be distributed normally with mean 45 and standard deviations 14.

Determine the number of examinees whose marks, out of 100 were;

(i) Less than 30.                                                         2MKS

(ii) Between 30 and 70.                                              2MKS

(iii) Between 60 and 80.                                          2MKS

(iv) More than 60.                                                 2MKS

(v) More than 40                              2MKS

 

 



1
Expert's answer
2022-03-13T12:48:29-0400

μ=45,σ=14,Z=(xμ)/σ\mu=45,\sigma=14,Z=(x-μ)/σ

i. P(x<30)=P(Z<(3045)/14)=P(Z<1.07)P(x<30)=P(Z<(30-45)/14)=P(Z<-1.07)

From z distribution table

P(Z<1.07)=0.1423P(Z<-1.07)=0.1423

therefore number of students =50000.1423=712=5000 * 0.1423 = 712


ii. P(30<x<70)=P((3045)/14<Z<(7045)/14)P(30<x<70)=P((30-45)/14<Z<(70-45)/14)

=P(1.07<Z<1.79)=P(Z<1.79)P(Z<1.07)=P(-1.07<Z<1.79)=P(Z<1.79)-P(Z<-1.07)

=0.96330.1423=0.821=0.9633-0.1423=0.821

Number of students =50000.821=4105=5000*0.821=4105


iii. P(60<x<80)=P((6045)/14<Z<(8045)/14)P(60<x<80)=P((60-45)/14<Z<(80-45)/14)

=P(1.07<Z<2.5)=P(Z<2.5)P(Z<1.07)=P(1.07<Z<2.5)=P(Z<2.5)-P(Z<1.07)

=0.99460.8577=0.1369=0.9946-0.8577=0.1369

Number of students =50000.1369=685=5000*0.1369=685


iv. P(x>60)=P(Z>(6045)/14)=P(Z>1.07)=1P(Z<1.07)P(x>60)=P(Z>(60-45)/14)=P(Z>1.07)=1-P(Z<1.07)

=10.8577=0.1423=1-0.8577=0.1423

Number of students =50000.1423=712=5000*0.1423=712


v. P(x>40)=P(Z>(4045)/14)=P(Z>0.36)=1P(Z<0.36)P(x>40)=P(Z>(40-45)/14)=P(Z>-0.36)=1-P(Z<-0.36)

=10.3594=0.6406=1-0.3594=0.6406

Number of students =50000.6406=3203=5000*0.6406=3203



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS