Given the probability distribution,
inquiries: 22, 23,24,25,26,27
Probability: 0.08, 0.19, 0.36, 0.25, 0.07, 0.05
The expected value is
E ( x ) = ∑ x p ( x ) = ( 22 × 0.08 ) + ( 23 × 0.19 ) + ( 24 × 0.36 ) + ( 25 × 0.25 ) + ( 26 × 0.07 ) + ( 27 × 0.05 ) = 24.19 E(x)=\sum xp(x)=(22\times0.08)+(23\times0.19)+(24\times0.36)+(25\times0.25)+(26\times0.07)+(27\times0.05)=24.19 E ( x ) = ∑ x p ( x ) = ( 22 × 0.08 ) + ( 23 × 0.19 ) + ( 24 × 0.36 ) + ( 25 × 0.25 ) + ( 26 × 0.07 ) + ( 27 × 0.05 ) = 24.19
The variance is given as,
v a r ( x ) = ∑ ( x 2 ) − ( ∑ ( x ) ) 2 var(x)=\sum (x^2)-(\sum(x))^2 v a r ( x ) = ∑ ( x 2 ) − ( ∑ ( x ) ) 2
We need to find E ( x 2 ) = ∑ x 2 p ( x ) = ( 484 × 0.08 ) + ( 529 × 0.19 ) + ( 576 × 0.36 ) + ( 625 × 0.25 ) + ( 676 × 0.07 ) + ( 729 × 0.05 ) = 586.61 E(x^2)=\sum x^2p(x)=(484\times0.08)+(529\times0.19)+(576\times0.36)+(625\times0.25)+(676\times0.07)+(729\times0.05)=586.61 E ( x 2 ) = ∑ x 2 p ( x ) = ( 484 × 0.08 ) + ( 529 × 0.19 ) + ( 576 × 0.36 ) + ( 625 × 0.25 ) + ( 676 × 0.07 ) + ( 729 × 0.05 ) = 586.61
Now,
v a r ( x ) = 586.61 − ( 24.19 ) 2 = 586.61 − 585.1561 = 1.4539 var(x)=586.61-(24.19)^2=586.61-585.1561=1.4539 v a r ( x ) = 586.61 − ( 24.19 ) 2 = 586.61 − 585.1561 = 1.4539
The standard deviation is
s d ( x ) = v a r ( x ) = 1.4539 = 1.2058 sd(x)=\sqrt{var(x)}=\sqrt{1.4539}=1.2058 s d ( x ) = v a r ( x ) = 1.4539 = 1.2058
Comments