Given the probability distribution,
inquiries: 22, 23,24,25,26,27
Probability: 0.08, 0.19, 0.36, 0.25, 0.07, 0.05
The expected value is
E(x)=∑xp(x)=(22×0.08)+(23×0.19)+(24×0.36)+(25×0.25)+(26×0.07)+(27×0.05)=24.19
The variance is given as,
var(x)=∑(x2)−(∑(x))2 
We need to find E(x2)=∑x2p(x)=(484×0.08)+(529×0.19)+(576×0.36)+(625×0.25)+(676×0.07)+(729×0.05)=586.61
Now,
var(x)=586.61−(24.19)2=586.61−585.1561=1.4539
The standard deviation is
sd(x)=var(x)=1.4539=1.2058
                             
Comments