find the variance and standard deviation of the probability distribution of a random variable x which can take only the values 2,4,5 and 9, given that p(2)= 9/20, p(4)= 1/20, p(5) = 1/5, and p(3)= 3/10
Given the probability distribution,
x 2 4 5 9
p(x) 9/20 1/20 1/5 3/10
The expected value is
"E(x)=\\sum xp(x)=(2\\times{9\\over20})+(4\\times{1\\over20})+(5\\times{1\\over5})+(9\\times{3\\over10})=4.8"
The variance is given as,
"var(x)=\\sum (x^2)-(\\sum(x))^2"
We need to find "E(x^2)=\\sum x^2p(x)=)=(4\\times{9\\over20})+(16\\times{1\\over20})+(25\\times{1\\over5})+(81\\times{3\\over10})=31.9"
Now,
"var(x)=31.9-(4.8)^2=31.9-23.04=8.86"
The standard deviation is,
s"sd(x)=\\sqrt{var(x)}=\\sqrt{8.86}=2.9766"
Comments
Leave a comment