Question #295621

Find the variance and standard deviation of the probability distribution of the random variable X, which can take only the values 1,2, and 3, given that P(1)= 10/33 P(2)=1/3 and P(3) = 22/33

1
Expert's answer
2022-02-10T04:04:17-0500

The probability of each of these events and the corresponding value of X, can be summarized below.



x123P(x)1033131233.\begin{matrix} x & 1 & 2 & 3\\ P(x) & \frac{10}{33} & \frac{1}{3} & \frac{12}{33}. \end{matrix}

The mean (also known as the expected value) of a discrete random variable X is the number given by



μ=E(X)=xP(x)=1(1033)+2(13)+3(1233),=1033+23+3633=68332.060606\mu =E(X)=\sum x P(x)=1\left(\frac{10}{33}\right)+2\left(\frac{1}{3}\right)+3\left(\frac{12}{33}\right),\\ =\frac{10}{33}+\frac{2}{3}+\frac{36}{33}=\frac{68}{33}\approx2.060606


Therefore, mean of the random variable x is 6833.\dfrac{68}{33}.

E(X2)=xP(x)=12(1033)+22(13)+32(1233),E(X^2)=\sum x P(x)=1^2\left(\frac{10}{33}\right)+2^2\left(\frac{1}{3}\right)+3^2\left(\frac{12}{33}\right),\\

=1033+43+10833=16233.=\frac{10}{33}+\frac{4}{3}+\frac{108}{33}=\frac{162}{33}.

Var(X)=σ2=E(X2)(E(X))2Var(X)=\sigma^2=E(X^2)-(E(X))^2

=16233(6833)2=7221089=\frac{162}{33}-(\frac{68}{33})^2=\frac{722}{1089}

σ=7221089=192330.814244\sigma=\sqrt{\frac{722}{1089}}=\dfrac{19\sqrt{2}}{33}\approx0.814244


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS