let x be a random variable with E(x)=1 and e[x(x-1)]=4. find var(x)
We are given that,
E(x)=1E(x)=1E(x)=1 and E(x(x−1))=4E(x(x-1))=4E(x(x−1))=4
We can write E(x(x−1))E(x(x-1))E(x(x−1)) as,
E(x(x−1))=E(x2−x)=E(x2)−E(x)=4E(x(x-1))=E(x^2-x)=E(x^2)-E(x)=4E(x(x−1))=E(x2−x)=E(x2)−E(x)=4, but E(x)=1E(x)=1E(x)=1. So,E(x2)−E(x)=E(x2)−1=4 ⟹ E(x2)=5E(x^2)-E(x)=E(x^2)-1=4\implies E(x^2)=5E(x2)−E(x)=E(x2)−1=4⟹E(x2)=5
Now,
var(x)=E(x2)−(E(x))2=5−(1)2=5−1=4var(x)=E(x^2)-(E(x))^2=5-(1)^2=5-1=4var(x)=E(x2)−(E(x))2=5−(1)2=5−1=4
Therefore, var(x)=4.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments