Question #277961

Let 𝐼 = 0∫10 𝑓(𝑥)𝑑x . You are asked to approximate the value of I using (i) uniform random 0 10 ∫ 𝑓(𝑥)𝑑𝑥 variable, (ii) Monte Carlo simulation and (iii) antithetic variates





a. Write down the procedures for the Monte Carlo simulation without using antithetic variates.





b. Write down the antithetic variable.

1
Expert's answer
2021-12-14T09:54:18-0500

ii)

Monte Carlo approximation of the integral:


f(x)dx=1nf(xi)\int f(x)dx=\frac{1}{n}\sum f(x_i)


where xi are are independent observations of X

if n = 10, then:


010f(x)dx=110f(xi)\int^{10}_0 f(x)dx=\frac{1}{10}\sum f(x_i)


iii)

 antithetic variates:


f(x)dx=1nf(xi)2+1nf(1xi)2\int f(x)dx=\frac{1}{n}\sum \frac{f(x_i)}{2}+\frac{1}{n}\sum \frac{f(1-x_i)}{2}


if n = 10, then:


010f(x)dx=110f(xi)2+110f(1xi)2\int^{10}_0 f(x)dx=\frac{1}{10}\sum \frac{f(x_i)}{2}+\frac{1}{10}\sum \frac{f(1-x_i)}{2}


i)

using uniform random variable:


abf(x)dx=banf(xi)\int^{b}_a f(x)dx=\frac{b-a}{n}\sum f(x_i)


010f(x)dx=10nf(xi)\int^{10}_0 f(x)dx=\frac{10}{n}\sum f(x_i)


a.

Monte Carlo simulation without using antithetic variates:

f(x)dx=1nf(xi)\int f(x)dx=\frac{1}{n}\sum f(x_i)


where xi are are independent observations of X

if n = 10, then:


010f(x)dx=110f(xi)\int^{10}_0 f(x)dx=\frac{1}{10}\sum f(x_i)


b.

antithetic variable is (1xi)(1-x_i)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS