Let ๐ผ = 0โซ10 ๐(๐ฅ)๐x . You are asked to approximate the value of I using (i) uniform random 0 10 โซ ๐(๐ฅ)๐๐ฅ variable, (ii) Monte Carlo simulation and (iii) antithetic variates
a. Write down the procedures for the Monte Carlo simulation without using antithetic variates.
b. Write down the antithetic variable.
ii)
Monte Carlo approximation of the integral:
"\\int f(x)dx=\\frac{1}{n}\\sum f(x_i)"
where xi are are independent observations of X
if n = 10, then:
"\\int^{10}_0 f(x)dx=\\frac{1}{10}\\sum f(x_i)"
iii)
ย antithetic variates:
"\\int f(x)dx=\\frac{1}{n}\\sum \\frac{f(x_i)}{2}+\\frac{1}{n}\\sum \\frac{f(1-x_i)}{2}"
if n = 10, then:
"\\int^{10}_0 f(x)dx=\\frac{1}{10}\\sum \\frac{f(x_i)}{2}+\\frac{1}{10}\\sum \\frac{f(1-x_i)}{2}"
i)
using uniform random variable:
"\\int^{b}_a f(x)dx=\\frac{b-a}{n}\\sum f(x_i)"
"\\int^{10}_0 f(x)dx=\\frac{10}{n}\\sum f(x_i)"
a.
Monte Carlo simulation without using antithetic variates:
"\\int f(x)dx=\\frac{1}{n}\\sum f(x_i)"
where xi are are independent observations of X
if n = 10, then:
"\\int^{10}_0 f(x)dx=\\frac{1}{10}\\sum f(x_i)"
b.
antithetic variable is "(1-x_i)"
Comments
Leave a comment