Suppose X~Binomial(n,p).Find the pgf of Y=X+1 in terms of GP(x)
The probability generating function (PGF) of X is GX(s) = E(sX), for all s ∈ R for which the sum converges.
for Binomial Distribution:
"G_X(s)=\\sum s^x\\begin{pmatrix}\n n \\\\\n x\n\\end{pmatrix}p^xq^{n-x}=\\sum \\begin{pmatrix}\n n \\\\\n x\n\\end{pmatrix}(ps)^xq^{n-x}=(ps+q)^n"
"G_Y(s)=\\sum \\begin{pmatrix}\n n \\\\\n y\n\\end{pmatrix}(ps)^yq^{n-y}=\\sum \\begin{pmatrix}\n n \\\\\n x+1\n\\end{pmatrix}(ps)^{x+1}q^{n-(x+1)}=(ps+q)^n=G_X(s)"
Comments
Leave a comment