X1,X2,...,Xn be IID.
f(x)=qxp;,x=0,1,2,...X∼G(p)E(X)=pq,Var(X)=p2qMX(t)=1−qetp,GX(t)=1−qtpSn=X1+X2+...+XnGSn(Z)=GX1(Z)GX2(Z)...GXn(Z)=Πi=1nGXi(Z)GX(Z)=E(Zx)=1−qzp [GX(.)→pdf of X]
So, GSn(Z)=(1−qzp)n
E(Sn)=E(X1+X2+...+Xn)=Σi=1nE(Xi)=Σi=1npq=pnq
Var(Sn)=Var(X1+X2+...+Xn)=Σi=1nVar(Xi) [Since Xi's are IIDs]
=n×p2q=p2nq
Comments
Leave a comment