If X is a random variable such that P (X=x)=Pn,Gp(x) is the pgf f X:n=0,1,2...
Define P[X≥n]=qn.Obtain the pgf of qn in terms of GP(x)
The probability generating function (PGF) of X is GX(s) = E(sX), for all s ∈ R for which the sum converges:
Gxn(s)=∑k=1nskP(x=n)=∑k=1nskPnG_{xn}(s)=\displaystyle\sum_{k=1}^{n} s^kP(x=n)=\displaystyle\sum_{k=1}^{n} s^kP_nGxn(s)=k=1∑nskP(x=n)=k=1∑nskPn
Gqn(s)=1−∑k=1nskP(x≤n)G_{qn}(s)=1-\displaystyle\sum_{k=1}^{n} s^kP(x\le n)Gqn(s)=1−k=1∑nskP(x≤n)
Gqn(s)=1−(sP(x=1)+∑k=12s2P(x=2)+...+∑k=1nsnP(x=n))G_{qn}(s)=1-( sP(x=1)+\displaystyle\sum_{k=1}^{2} s^2P(x=2)+...+\displaystyle\sum_{k=1}^{n} s^nP(x=n))Gqn(s)=1−(sP(x=1)+k=1∑2s2P(x=2)+...+k=1∑nsnP(x=n))
Gqn(s)=1−∑k=1nGxn(s)G_{qn}(s)=1-\displaystyle\sum_{k=1}^{n}G_{xn}(s)Gqn(s)=1−k=1∑nGxn(s)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments