Two ideal dice are thrown . Let X1 be the score on the first die and X2 be the score on the second die. Let Y = max(X1, X2) then
(i) Evaluate Corr(Y, X1).
(ii) Evaluate Corr(Y, X2).
Let us list all the possible outcomes when the two ideal dice are rolled.
The possible outcomes are listed below.
"\\begin{bmatrix}\n (1,1) & (2,1) & (3,1) & (4,1)& (5,1)&(6,1) \\\\\n (1,2) & (2,2)&(3,2)&(4,2)&(5,2)&(6,2)\\\\\n (1,3)&(2,3)&(3,3)&(4,3)&(5,3)&(6,3)\\\\\n (1,4)&(2,4)&(3,4)&(4,4)&(5,4)&(6,4)\\\\\n (1,5)&(2,5)&(3,5)&(4,5)&(5,5)&(6,5)\\\\\n (1,6)&(2,6)&(3,6)&(4,6)&(5,6)&(6,6)\n\\end{bmatrix}"
We are given that,
"X_1" is the score on the first die,
"X_2" is the score on the second die and
"Y = max(X_1, X_2)"
The probability distribution of "X_1" is given below.
X1 1 2 3 4 5 6
P (X1) "{1\\over 6}" "{1\\over 6}" "{1\\over 6}" "{1\\over 6}" "{1\\over 6}" "{1\\over 6}"
The probability distribution of "X_2" is given below.
X2 1 2 3 4 5 6
P (X2) "{1\\over 6}" "{1\\over 6}" "{1\\over 6}" "{1\\over 6}" "{1\\over 6}" "{1\\over 6}"
The probability distribution of "Y" is given below.
"Y" 1 2 3 4 5 6
"P(Y)" "{1\\over 36}" "{3\\over36}" "{5\\over36}" "{7\\over36}" "{9\\over 36}" "{11\\over 36}"
The joint distribution of "Y"and "X_1" is,
Y/X1 1 2 3 4 5 6
1 "{1\\over36}"
2 "{1\\over36}" "{2\\over36}"
3 "{1\\over 36}" "{1\\over36}" "{3\\over36}"
4 "{1\\over36}" "{1\\over 36}" "{1\\over36}" "{4\\over36}"
5 "{1\\over36}" "{1\\over36}" "{1\\over36}" "{1\\over36}" "{5\\over36}"
6 "{1\\over36}" "{1\\over36}" "{1\\over36}" "{1\\over36}" "{1\\over36}" "{6\\over36}"
The joint distribution of "Y"and "X_2" is,
Y/X2 1 2 3 4 5 6
1 "{1\\over36}"
2 "{1\\over36}" "{2\\over36}"
3 "{1\\over 36}" "{1\\over36}" "{3\\over36}"
4 "{1\\over36}" "{1\\over 36}" "{1\\over36}" "{4\\over36}"
5 "{1\\over36}" "{1\\over36}" "{1\\over36}" "{1\\over36}" "{5\\over36}"
6 "{1\\over36}" "{1\\over36}" "{1\\over36}" "{1\\over36}" "{1\\over36}" "{6\\over36}"
We determine the following,
"E(X_1)=\\sum X_1*P(X_1)=(1*{1\\over6})+(2*{1\\over6})+(3*{1\\over6})+(4*{1\\over6})+(5*{1\\over6})+(6*{1\\over6})=3.5"
"E(X_1^2)=\\sum X_1^2*P(X_1)=(1*{1\\over6})+(4*{1\\over6})+(9*{1\\over6})+(16*{1\\over6})+(25*{1\\over6})+(36*{1\\over6})={91\\over6}=15.17(2dp)"
Variance of the random variable "X_1" is,
"Var(X_1)=E(X_1^2)-(E(X_1))^2={91\\over6}-(3.5^2)={70\\over24}"
"E(X_2)=\\sum X_2*P(X_2)=(1*{1\\over6})+(2*{1\\over6})+(3*{1\\over6})+(4*{1\\over6})+(5*{1\\over6})+(6*{1\\over6})=3.5"
"E(X_2^2)=\\sum X_2^2*P(X_2)=(1*{1\\over6})+(4*{1\\over6})+(9*{1\\over6})+(16*{1\\over6})+(25*{1\\over6})+(36*{1\\over6})={91\\over6}=15.17(2dp)"
Variance of the random variable "X_1" is,
"Var(X_2)=E(X_2^2)-(E(X_2))^2={91\\over6}-(3.5^2)={70\\over24}"
"E(Y)=\\sum Y(P=Y)=(1*{1\\over36})+(2*{3\\over36})+(3*{5\\over36})+(4*{7\\over36})+(5*{9\\over36})+(6*{11\\over36})={161\\over36}"
"E(Y^2)=\\sum Y^2(P=Y)=(1*{1\\over36})+(4*{3\\over36})+(9*{5\\over36})+(16*{7\\over36})+(25*{9\\over36})+(36*{11\\over36})={791\\over36}"
Variance of the random variable "Y" IS,
"Var(Y)=E(Y^2)-(E(Y))^2={791\\over36}-({161\\over36})^2={2555\\over1296}"
Also, we need to determine the following,
"E(X_1Y)=\\sum (X _1Y)*P(X_1\\cap Y)=(1*{1\\over36})+(2*{1\\over36})+(3*{1\\over36})+(4*{1\\over36})+(5*{1\\over36})+(6*{1\\over 36})+(4*{2\\over36})+(6*{1\\over36})+(8*{1\\over36})+(10*{1\\over36})+(12*{1\\over36})+(9*{3\\over36})+(12*{1\\over36})+(15*{1\\over36})+(18*{1\\over36})+(16*{4\\over36})+(20*{1\\over36})+(24*{1\\over36})+(25*{5\\over36})+(30*{1\\over36})+(36*{6\\over36})={616\\over36}"
"E(X_2Y)=\\sum (X _2Y)*P(X_2\\cap Y)=(1*{1\\over36})+(2*{1\\over36})+(3*{1\\over36})+(4*{1\\over36})+(5*{1\\over36})+(6*{1\\over 36})+(4*{2\\over36})+(6*{1\\over36})+(8*{1\\over36})+(10*{1\\over36})+(12*{1\\over36})+(9*{3\\over36})+(12*{1\\over36})+(15*{1\\over36})+(18*{1\\over36})+(16*{4\\over36})+(20*{1\\over36})+(24*{1\\over36})+(25*{5\\over36})+(30*{1\\over36})+(36*{6\\over36})={616\\over36}"
We use the following formula to find "corr(Y,X_1)",
"corr(Y,X_1)={cov(X_1,Y)\\over \\sqrt{var(X_1)*var(Y)}}" where "cov(X_1,Y)=E(X_1Y)-E(X_1)*E(Y)={616\\over36}-({161\\over36}*{21\\over6})=1.45833331"
Therefore,
"corr(X_1,Y)={1.45833331\\over2.39792917}=0.6082(4dp)"
To find "corr(Y,X_2)" we use the formula below,
"corr(Y,X_2)={cov(X_2,Y)\\over \\sqrt{var(X_2)*var(Y)}}" where "cov(X_2,Y)=E(X_2Y)-E(X_2)*E(Y)={616\\over36}-({161\\over36}*{21\\over6})=1.45833331"
Therefore,
"corr(X_2,Y)={1.45833331\\over2.39792917}=0.6082(4dp)"
Therefore, "corr(Y,X_1)=corr(Y,X_2)=0.6082"
Comments
Leave a comment