Let us list all the possible outcomes when the two ideal dice are rolled.
The possible outcomes are listed below.
⎣⎡(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)⎦⎤
We are given that,
X1 is the score on the first die,
X2 is the score on the second die and
Y=max(X1,X2)
The probability distribution of X1 is given below.
X1 1 2 3 4 5 6
P (X1) 61 61 61 61 61 61
The probability distribution of X2 is given below.
X2 1 2 3 4 5 6
P (X2) 61 61 61 61 61 61
The probability distribution of Y is given below.
Y 1 2 3 4 5 6
P(Y) 361 363 365 367 369 3611
The joint distribution of Yand X1 is,
Y/X1 1 2 3 4 5 6
1 361
2 361 362
3 361 361 363
4 361 361 361 364
5 361 361 361 361 365
6 361 361 361 361 361 366
The joint distribution of Yand X2 is,
Y/X2 1 2 3 4 5 6
1 361
2 361 362
3 361 361 363
4 361 361 361 364
5 361 361 361 361 365
6 361 361 361 361 361 366
We determine the following,
E(X1)=∑X1∗P(X1)=(1∗61)+(2∗61)+(3∗61)+(4∗61)+(5∗61)+(6∗61)=3.5
E(X12)=∑X12∗P(X1)=(1∗61)+(4∗61)+(9∗61)+(16∗61)+(25∗61)+(36∗61)=691=15.17(2dp)
Variance of the random variable X1 is,
Var(X1)=E(X12)−(E(X1))2=691−(3.52)=2470
E(X2)=∑X2∗P(X2)=(1∗61)+(2∗61)+(3∗61)+(4∗61)+(5∗61)+(6∗61)=3.5
E(X22)=∑X22∗P(X2)=(1∗61)+(4∗61)+(9∗61)+(16∗61)+(25∗61)+(36∗61)=691=15.17(2dp)
Variance of the random variable X1 is,
Var(X2)=E(X22)−(E(X2))2=691−(3.52)=2470
E(Y)=∑Y(P=Y)=(1∗361)+(2∗363)+(3∗365)+(4∗367)+(5∗369)+(6∗3611)=36161
E(Y2)=∑Y2(P=Y)=(1∗361)+(4∗363)+(9∗365)+(16∗367)+(25∗369)+(36∗3611)=36791
Variance of the random variable Y IS,
Var(Y)=E(Y2)−(E(Y))2=36791−(36161)2=12962555
Also, we need to determine the following,
E(X1Y)=∑(X1Y)∗P(X1∩Y)=(1∗361)+(2∗361)+(3∗361)+(4∗361)+(5∗361)+(6∗361)+(4∗362)+(6∗361)+(8∗361)+(10∗361)+(12∗361)+(9∗363)+(12∗361)+(15∗361)+(18∗361)+(16∗364)+(20∗361)+(24∗361)+(25∗365)+(30∗361)+(36∗366)=36616
E(X2Y)=∑(X2Y)∗P(X2∩Y)=(1∗361)+(2∗361)+(3∗361)+(4∗361)+(5∗361)+(6∗361)+(4∗362)+(6∗361)+(8∗361)+(10∗361)+(12∗361)+(9∗363)+(12∗361)+(15∗361)+(18∗361)+(16∗364)+(20∗361)+(24∗361)+(25∗365)+(30∗361)+(36∗366)=36616
We use the following formula to find corr(Y,X1),
corr(Y,X1)=var(X1)∗var(Y)cov(X1,Y) where cov(X1,Y)=E(X1Y)−E(X1)∗E(Y)=36616−(36161∗621)=1.45833331
Therefore,
corr(X1,Y)=2.397929171.45833331=0.6082(4dp)
To find corr(Y,X2) we use the formula below,
corr(Y,X2)=var(X2)∗var(Y)cov(X2,Y) where cov(X2,Y)=E(X2Y)−E(X2)∗E(Y)=36616−(36161∗621)=1.45833331
Therefore,
corr(X2,Y)=2.397929171.45833331=0.6082(4dp)
Therefore, corr(Y,X1)=corr(Y,X2)=0.6082
Comments