Question #275096

Two ideal dice are thrown . Let X1 be the score on the first die and X2 be the score on the second die. Let Y = max(X1, X2) then

(i) Evaluate Corr(Y, X1).

(ii) Evaluate Corr(Y, X2).



1
Expert's answer
2021-12-16T07:31:08-0500

Let us list all the possible outcomes when the two ideal dice are rolled.

The possible outcomes are listed below.

[(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)]\begin{bmatrix} (1,1) & (2,1) & (3,1) & (4,1)& (5,1)&(6,1) \\ (1,2) & (2,2)&(3,2)&(4,2)&(5,2)&(6,2)\\ (1,3)&(2,3)&(3,3)&(4,3)&(5,3)&(6,3)\\ (1,4)&(2,4)&(3,4)&(4,4)&(5,4)&(6,4)\\ (1,5)&(2,5)&(3,5)&(4,5)&(5,5)&(6,5)\\ (1,6)&(2,6)&(3,6)&(4,6)&(5,6)&(6,6) \end{bmatrix}

We are given that,

X1X_1 is the score on the first die,

X2X_2 is the score on the second die and

Y=max(X1,X2)Y = max(X_1, X_2)

The probability distribution of X1X_1 is given below.

X1 1 2 3 4 5 6

P (X1) 16{1\over 6} 16{1\over 6} 16{1\over 6} 16{1\over 6} 16{1\over 6} 16{1\over 6}


The probability distribution of X2X_2 is given below.

X2 1 2 3 4 5 6

P (X2) 16{1\over 6} 16{1\over 6} 16{1\over 6} 16{1\over 6} 16{1\over 6} 16{1\over 6}

The probability distribution of YY is given below.

YY 1 2 3 4 5 6

P(Y)P(Y) 136{1\over 36} 336{3\over36} 536{5\over36} 736{7\over36} 936{9\over 36} 1136{11\over 36}


The joint distribution of YYand X1X_1 is,

Y/X1 1 2 3 4 5 6

1 136{1\over36}

2 136{1\over36} 236{2\over36}


3 136{1\over 36} 136{1\over36} 336{3\over36}


4 136{1\over36} 136{1\over 36} 136{1\over36} 436{4\over36}


5 136{1\over36} 136{1\over36} 136{1\over36} 136{1\over36} 536{5\over36}


6 136{1\over36} 136{1\over36} 136{1\over36} 136{1\over36} 136{1\over36} 636{6\over36}


The joint distribution of YYand X2X_2 is,

Y/X2 1 2 3 4 5 6

1 136{1\over36}

2 136{1\over36} 236{2\over36}


3 136{1\over 36} 136{1\over36} 336{3\over36}


4 136{1\over36} 136{1\over 36} 136{1\over36} 436{4\over36}


5 136{1\over36} 136{1\over36} 136{1\over36} 136{1\over36} 536{5\over36}


6 136{1\over36} 136{1\over36} 136{1\over36} 136{1\over36} 136{1\over36} 636{6\over36}

We determine the following,

E(X1)=X1P(X1)=(116)+(216)+(316)+(416)+(516)+(616)=3.5E(X_1)=\sum X_1*P(X_1)=(1*{1\over6})+(2*{1\over6})+(3*{1\over6})+(4*{1\over6})+(5*{1\over6})+(6*{1\over6})=3.5

E(X12)=X12P(X1)=(116)+(416)+(916)+(1616)+(2516)+(3616)=916=15.17(2dp)E(X_1^2)=\sum X_1^2*P(X_1)=(1*{1\over6})+(4*{1\over6})+(9*{1\over6})+(16*{1\over6})+(25*{1\over6})+(36*{1\over6})={91\over6}=15.17(2dp)

Variance of the random variable X1X_1 is,

Var(X1)=E(X12)(E(X1))2=916(3.52)=7024Var(X_1)=E(X_1^2)-(E(X_1))^2={91\over6}-(3.5^2)={70\over24}


E(X2)=X2P(X2)=(116)+(216)+(316)+(416)+(516)+(616)=3.5E(X_2)=\sum X_2*P(X_2)=(1*{1\over6})+(2*{1\over6})+(3*{1\over6})+(4*{1\over6})+(5*{1\over6})+(6*{1\over6})=3.5

E(X22)=X22P(X2)=(116)+(416)+(916)+(1616)+(2516)+(3616)=916=15.17(2dp)E(X_2^2)=\sum X_2^2*P(X_2)=(1*{1\over6})+(4*{1\over6})+(9*{1\over6})+(16*{1\over6})+(25*{1\over6})+(36*{1\over6})={91\over6}=15.17(2dp)


Variance of the random variable X1X_1 is,

Var(X2)=E(X22)(E(X2))2=916(3.52)=7024Var(X_2)=E(X_2^2)-(E(X_2))^2={91\over6}-(3.5^2)={70\over24}


E(Y)=Y(P=Y)=(1136)+(2336)+(3536)+(4736)+(5936)+(61136)=16136E(Y)=\sum Y(P=Y)=(1*{1\over36})+(2*{3\over36})+(3*{5\over36})+(4*{7\over36})+(5*{9\over36})+(6*{11\over36})={161\over36}

E(Y2)=Y2(P=Y)=(1136)+(4336)+(9536)+(16736)+(25936)+(361136)=79136E(Y^2)=\sum Y^2(P=Y)=(1*{1\over36})+(4*{3\over36})+(9*{5\over36})+(16*{7\over36})+(25*{9\over36})+(36*{11\over36})={791\over36}

Variance of the random variable YY IS,

Var(Y)=E(Y2)(E(Y))2=79136(16136)2=25551296Var(Y)=E(Y^2)-(E(Y))^2={791\over36}-({161\over36})^2={2555\over1296}

Also, we need to determine the following,

E(X1Y)=(X1Y)P(X1Y)=(1136)+(2136)+(3136)+(4136)+(5136)+(6136)+(4236)+(6136)+(8136)+(10136)+(12136)+(9336)+(12136)+(15136)+(18136)+(16436)+(20136)+(24136)+(25536)+(30136)+(36636)=61636E(X_1Y)=\sum (X _1Y)*P(X_1\cap Y)=(1*{1\over36})+(2*{1\over36})+(3*{1\over36})+(4*{1\over36})+(5*{1\over36})+(6*{1\over 36})+(4*{2\over36})+(6*{1\over36})+(8*{1\over36})+(10*{1\over36})+(12*{1\over36})+(9*{3\over36})+(12*{1\over36})+(15*{1\over36})+(18*{1\over36})+(16*{4\over36})+(20*{1\over36})+(24*{1\over36})+(25*{5\over36})+(30*{1\over36})+(36*{6\over36})={616\over36}


E(X2Y)=(X2Y)P(X2Y)=(1136)+(2136)+(3136)+(4136)+(5136)+(6136)+(4236)+(6136)+(8136)+(10136)+(12136)+(9336)+(12136)+(15136)+(18136)+(16436)+(20136)+(24136)+(25536)+(30136)+(36636)=61636E(X_2Y)=\sum (X _2Y)*P(X_2\cap Y)=(1*{1\over36})+(2*{1\over36})+(3*{1\over36})+(4*{1\over36})+(5*{1\over36})+(6*{1\over 36})+(4*{2\over36})+(6*{1\over36})+(8*{1\over36})+(10*{1\over36})+(12*{1\over36})+(9*{3\over36})+(12*{1\over36})+(15*{1\over36})+(18*{1\over36})+(16*{4\over36})+(20*{1\over36})+(24*{1\over36})+(25*{5\over36})+(30*{1\over36})+(36*{6\over36})={616\over36}

We use the following formula to find corr(Y,X1)corr(Y,X_1),

corr(Y,X1)=cov(X1,Y)var(X1)var(Y)corr(Y,X_1)={cov(X_1,Y)\over \sqrt{var(X_1)*var(Y)}} where cov(X1,Y)=E(X1Y)E(X1)E(Y)=61636(16136216)=1.45833331cov(X_1,Y)=E(X_1Y)-E(X_1)*E(Y)={616\over36}-({161\over36}*{21\over6})=1.45833331

Therefore,

corr(X1,Y)=1.458333312.39792917=0.6082(4dp)corr(X_1,Y)={1.45833331\over2.39792917}=0.6082(4dp)


To find corr(Y,X2)corr(Y,X_2) we use the formula below,

corr(Y,X2)=cov(X2,Y)var(X2)var(Y)corr(Y,X_2)={cov(X_2,Y)\over \sqrt{var(X_2)*var(Y)}} where cov(X2,Y)=E(X2Y)E(X2)E(Y)=61636(16136216)=1.45833331cov(X_2,Y)=E(X_2Y)-E(X_2)*E(Y)={616\over36}-({161\over36}*{21\over6})=1.45833331

Therefore,

corr(X2,Y)=1.458333312.39792917=0.6082(4dp)corr(X_2,Y)={1.45833331\over2.39792917}=0.6082(4dp)

Therefore, corr(Y,X1)=corr(Y,X2)=0.6082corr(Y,X_1)=corr(Y,X_2)=0.6082


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS