Let us list all the possible outcomes when the two ideal dice are rolled.
The possible outcomes are listed below.
[ ( 1 , 1 ) ( 2 , 1 ) ( 3 , 1 ) ( 4 , 1 ) ( 5 , 1 ) ( 6 , 1 ) ( 1 , 2 ) ( 2 , 2 ) ( 3 , 2 ) ( 4 , 2 ) ( 5 , 2 ) ( 6 , 2 ) ( 1 , 3 ) ( 2 , 3 ) ( 3 , 3 ) ( 4 , 3 ) ( 5 , 3 ) ( 6 , 3 ) ( 1 , 4 ) ( 2 , 4 ) ( 3 , 4 ) ( 4 , 4 ) ( 5 , 4 ) ( 6 , 4 ) ( 1 , 5 ) ( 2 , 5 ) ( 3 , 5 ) ( 4 , 5 ) ( 5 , 5 ) ( 6 , 5 ) ( 1 , 6 ) ( 2 , 6 ) ( 3 , 6 ) ( 4 , 6 ) ( 5 , 6 ) ( 6 , 6 ) ] \begin{bmatrix}
(1,1) & (2,1) & (3,1) & (4,1)& (5,1)&(6,1) \\
(1,2) & (2,2)&(3,2)&(4,2)&(5,2)&(6,2)\\
(1,3)&(2,3)&(3,3)&(4,3)&(5,3)&(6,3)\\
(1,4)&(2,4)&(3,4)&(4,4)&(5,4)&(6,4)\\
(1,5)&(2,5)&(3,5)&(4,5)&(5,5)&(6,5)\\
(1,6)&(2,6)&(3,6)&(4,6)&(5,6)&(6,6)
\end{bmatrix} ⎣ ⎡ ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) ( 1 , 4 ) ( 1 , 5 ) ( 1 , 6 ) ( 2 , 1 ) ( 2 , 2 ) ( 2 , 3 ) ( 2 , 4 ) ( 2 , 5 ) ( 2 , 6 ) ( 3 , 1 ) ( 3 , 2 ) ( 3 , 3 ) ( 3 , 4 ) ( 3 , 5 ) ( 3 , 6 ) ( 4 , 1 ) ( 4 , 2 ) ( 4 , 3 ) ( 4 , 4 ) ( 4 , 5 ) ( 4 , 6 ) ( 5 , 1 ) ( 5 , 2 ) ( 5 , 3 ) ( 5 , 4 ) ( 5 , 5 ) ( 5 , 6 ) ( 6 , 1 ) ( 6 , 2 ) ( 6 , 3 ) ( 6 , 4 ) ( 6 , 5 ) ( 6 , 6 ) ⎦ ⎤
We are given that,
X 1 X_1 X 1 is the score on the first die,
X 2 X_2 X 2 is the score on the second die and
Y = m a x ( X 1 , X 2 ) Y = max(X_1, X_2) Y = ma x ( X 1 , X 2 )
The probability distribution of X 1 X_1 X 1 is given below.
X1 1 2 3 4 5 6
P (X1 ) 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1
The probability distribution of X 2 X_2 X 2 is given below.
X2 1 2 3 4 5 6
P (X2 ) 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1 1 6 {1\over 6} 6 1
The probability distribution of Y Y Y is given below.
Y Y Y 1 2 3 4 5 6
P ( Y ) P(Y) P ( Y ) 1 36 {1\over 36} 36 1 3 36 {3\over36} 36 3 5 36 {5\over36} 36 5 7 36 {7\over36} 36 7 9 36 {9\over 36} 36 9 11 36 {11\over 36} 36 11
The joint distribution of Y Y Y and X 1 X_1 X 1 is,
Y/X1 1 2 3 4 5 6
1 1 36 {1\over36} 36 1
2 1 36 {1\over36} 36 1 2 36 {2\over36} 36 2
3 1 36 {1\over 36} 36 1 1 36 {1\over36} 36 1 3 36 {3\over36} 36 3
4 1 36 {1\over36} 36 1 1 36 {1\over 36} 36 1 1 36 {1\over36} 36 1 4 36 {4\over36} 36 4
5 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 5 36 {5\over36} 36 5
6 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 6 36 {6\over36} 36 6
The joint distribution of Y Y Y and X 2 X_2 X 2 is,
Y/X2 1 2 3 4 5 6
1 1 36 {1\over36} 36 1
2 1 36 {1\over36} 36 1 2 36 {2\over36} 36 2
3 1 36 {1\over 36} 36 1 1 36 {1\over36} 36 1 3 36 {3\over36} 36 3
4 1 36 {1\over36} 36 1 1 36 {1\over 36} 36 1 1 36 {1\over36} 36 1 4 36 {4\over36} 36 4
5 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 5 36 {5\over36} 36 5
6 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 1 36 {1\over36} 36 1 6 36 {6\over36} 36 6
We determine the following,
E ( X 1 ) = ∑ X 1 ∗ P ( X 1 ) = ( 1 ∗ 1 6 ) + ( 2 ∗ 1 6 ) + ( 3 ∗ 1 6 ) + ( 4 ∗ 1 6 ) + ( 5 ∗ 1 6 ) + ( 6 ∗ 1 6 ) = 3.5 E(X_1)=\sum X_1*P(X_1)=(1*{1\over6})+(2*{1\over6})+(3*{1\over6})+(4*{1\over6})+(5*{1\over6})+(6*{1\over6})=3.5 E ( X 1 ) = ∑ X 1 ∗ P ( X 1 ) = ( 1 ∗ 6 1 ) + ( 2 ∗ 6 1 ) + ( 3 ∗ 6 1 ) + ( 4 ∗ 6 1 ) + ( 5 ∗ 6 1 ) + ( 6 ∗ 6 1 ) = 3.5
E ( X 1 2 ) = ∑ X 1 2 ∗ P ( X 1 ) = ( 1 ∗ 1 6 ) + ( 4 ∗ 1 6 ) + ( 9 ∗ 1 6 ) + ( 16 ∗ 1 6 ) + ( 25 ∗ 1 6 ) + ( 36 ∗ 1 6 ) = 91 6 = 15.17 ( 2 d p ) E(X_1^2)=\sum X_1^2*P(X_1)=(1*{1\over6})+(4*{1\over6})+(9*{1\over6})+(16*{1\over6})+(25*{1\over6})+(36*{1\over6})={91\over6}=15.17(2dp) E ( X 1 2 ) = ∑ X 1 2 ∗ P ( X 1 ) = ( 1 ∗ 6 1 ) + ( 4 ∗ 6 1 ) + ( 9 ∗ 6 1 ) + ( 16 ∗ 6 1 ) + ( 25 ∗ 6 1 ) + ( 36 ∗ 6 1 ) = 6 91 = 15.17 ( 2 d p )
Variance of the random variable X 1 X_1 X 1 is,
V a r ( X 1 ) = E ( X 1 2 ) − ( E ( X 1 ) ) 2 = 91 6 − ( 3. 5 2 ) = 70 24 Var(X_1)=E(X_1^2)-(E(X_1))^2={91\over6}-(3.5^2)={70\over24} Va r ( X 1 ) = E ( X 1 2 ) − ( E ( X 1 ) ) 2 = 6 91 − ( 3. 5 2 ) = 24 70
E ( X 2 ) = ∑ X 2 ∗ P ( X 2 ) = ( 1 ∗ 1 6 ) + ( 2 ∗ 1 6 ) + ( 3 ∗ 1 6 ) + ( 4 ∗ 1 6 ) + ( 5 ∗ 1 6 ) + ( 6 ∗ 1 6 ) = 3.5 E(X_2)=\sum X_2*P(X_2)=(1*{1\over6})+(2*{1\over6})+(3*{1\over6})+(4*{1\over6})+(5*{1\over6})+(6*{1\over6})=3.5 E ( X 2 ) = ∑ X 2 ∗ P ( X 2 ) = ( 1 ∗ 6 1 ) + ( 2 ∗ 6 1 ) + ( 3 ∗ 6 1 ) + ( 4 ∗ 6 1 ) + ( 5 ∗ 6 1 ) + ( 6 ∗ 6 1 ) = 3.5
E ( X 2 2 ) = ∑ X 2 2 ∗ P ( X 2 ) = ( 1 ∗ 1 6 ) + ( 4 ∗ 1 6 ) + ( 9 ∗ 1 6 ) + ( 16 ∗ 1 6 ) + ( 25 ∗ 1 6 ) + ( 36 ∗ 1 6 ) = 91 6 = 15.17 ( 2 d p ) E(X_2^2)=\sum X_2^2*P(X_2)=(1*{1\over6})+(4*{1\over6})+(9*{1\over6})+(16*{1\over6})+(25*{1\over6})+(36*{1\over6})={91\over6}=15.17(2dp) E ( X 2 2 ) = ∑ X 2 2 ∗ P ( X 2 ) = ( 1 ∗ 6 1 ) + ( 4 ∗ 6 1 ) + ( 9 ∗ 6 1 ) + ( 16 ∗ 6 1 ) + ( 25 ∗ 6 1 ) + ( 36 ∗ 6 1 ) = 6 91 = 15.17 ( 2 d p )
Variance of the random variable X 1 X_1 X 1 is,
V a r ( X 2 ) = E ( X 2 2 ) − ( E ( X 2 ) ) 2 = 91 6 − ( 3. 5 2 ) = 70 24 Var(X_2)=E(X_2^2)-(E(X_2))^2={91\over6}-(3.5^2)={70\over24} Va r ( X 2 ) = E ( X 2 2 ) − ( E ( X 2 ) ) 2 = 6 91 − ( 3. 5 2 ) = 24 70
E ( Y ) = ∑ Y ( P = Y ) = ( 1 ∗ 1 36 ) + ( 2 ∗ 3 36 ) + ( 3 ∗ 5 36 ) + ( 4 ∗ 7 36 ) + ( 5 ∗ 9 36 ) + ( 6 ∗ 11 36 ) = 161 36 E(Y)=\sum Y(P=Y)=(1*{1\over36})+(2*{3\over36})+(3*{5\over36})+(4*{7\over36})+(5*{9\over36})+(6*{11\over36})={161\over36} E ( Y ) = ∑ Y ( P = Y ) = ( 1 ∗ 36 1 ) + ( 2 ∗ 36 3 ) + ( 3 ∗ 36 5 ) + ( 4 ∗ 36 7 ) + ( 5 ∗ 36 9 ) + ( 6 ∗ 36 11 ) = 36 161
E ( Y 2 ) = ∑ Y 2 ( P = Y ) = ( 1 ∗ 1 36 ) + ( 4 ∗ 3 36 ) + ( 9 ∗ 5 36 ) + ( 16 ∗ 7 36 ) + ( 25 ∗ 9 36 ) + ( 36 ∗ 11 36 ) = 791 36 E(Y^2)=\sum Y^2(P=Y)=(1*{1\over36})+(4*{3\over36})+(9*{5\over36})+(16*{7\over36})+(25*{9\over36})+(36*{11\over36})={791\over36} E ( Y 2 ) = ∑ Y 2 ( P = Y ) = ( 1 ∗ 36 1 ) + ( 4 ∗ 36 3 ) + ( 9 ∗ 36 5 ) + ( 16 ∗ 36 7 ) + ( 25 ∗ 36 9 ) + ( 36 ∗ 36 11 ) = 36 791
Variance of the random variable Y Y Y IS,
V a r ( Y ) = E ( Y 2 ) − ( E ( Y ) ) 2 = 791 36 − ( 161 36 ) 2 = 2555 1296 Var(Y)=E(Y^2)-(E(Y))^2={791\over36}-({161\over36})^2={2555\over1296} Va r ( Y ) = E ( Y 2 ) − ( E ( Y ) ) 2 = 36 791 − ( 36 161 ) 2 = 1296 2555
Also, we need to determine the following,
E ( X 1 Y ) = ∑ ( X 1 Y ) ∗ P ( X 1 ∩ Y ) = ( 1 ∗ 1 36 ) + ( 2 ∗ 1 36 ) + ( 3 ∗ 1 36 ) + ( 4 ∗ 1 36 ) + ( 5 ∗ 1 36 ) + ( 6 ∗ 1 36 ) + ( 4 ∗ 2 36 ) + ( 6 ∗ 1 36 ) + ( 8 ∗ 1 36 ) + ( 10 ∗ 1 36 ) + ( 12 ∗ 1 36 ) + ( 9 ∗ 3 36 ) + ( 12 ∗ 1 36 ) + ( 15 ∗ 1 36 ) + ( 18 ∗ 1 36 ) + ( 16 ∗ 4 36 ) + ( 20 ∗ 1 36 ) + ( 24 ∗ 1 36 ) + ( 25 ∗ 5 36 ) + ( 30 ∗ 1 36 ) + ( 36 ∗ 6 36 ) = 616 36 E(X_1Y)=\sum (X _1Y)*P(X_1\cap Y)=(1*{1\over36})+(2*{1\over36})+(3*{1\over36})+(4*{1\over36})+(5*{1\over36})+(6*{1\over 36})+(4*{2\over36})+(6*{1\over36})+(8*{1\over36})+(10*{1\over36})+(12*{1\over36})+(9*{3\over36})+(12*{1\over36})+(15*{1\over36})+(18*{1\over36})+(16*{4\over36})+(20*{1\over36})+(24*{1\over36})+(25*{5\over36})+(30*{1\over36})+(36*{6\over36})={616\over36} E ( X 1 Y ) = ∑ ( X 1 Y ) ∗ P ( X 1 ∩ Y ) = ( 1 ∗ 36 1 ) + ( 2 ∗ 36 1 ) + ( 3 ∗ 36 1 ) + ( 4 ∗ 36 1 ) + ( 5 ∗ 36 1 ) + ( 6 ∗ 36 1 ) + ( 4 ∗ 36 2 ) + ( 6 ∗ 36 1 ) + ( 8 ∗ 36 1 ) + ( 10 ∗ 36 1 ) + ( 12 ∗ 36 1 ) + ( 9 ∗ 36 3 ) + ( 12 ∗ 36 1 ) + ( 15 ∗ 36 1 ) + ( 18 ∗ 36 1 ) + ( 16 ∗ 36 4 ) + ( 20 ∗ 36 1 ) + ( 24 ∗ 36 1 ) + ( 25 ∗ 36 5 ) + ( 30 ∗ 36 1 ) + ( 36 ∗ 36 6 ) = 36 616
E ( X 2 Y ) = ∑ ( X 2 Y ) ∗ P ( X 2 ∩ Y ) = ( 1 ∗ 1 36 ) + ( 2 ∗ 1 36 ) + ( 3 ∗ 1 36 ) + ( 4 ∗ 1 36 ) + ( 5 ∗ 1 36 ) + ( 6 ∗ 1 36 ) + ( 4 ∗ 2 36 ) + ( 6 ∗ 1 36 ) + ( 8 ∗ 1 36 ) + ( 10 ∗ 1 36 ) + ( 12 ∗ 1 36 ) + ( 9 ∗ 3 36 ) + ( 12 ∗ 1 36 ) + ( 15 ∗ 1 36 ) + ( 18 ∗ 1 36 ) + ( 16 ∗ 4 36 ) + ( 20 ∗ 1 36 ) + ( 24 ∗ 1 36 ) + ( 25 ∗ 5 36 ) + ( 30 ∗ 1 36 ) + ( 36 ∗ 6 36 ) = 616 36 E(X_2Y)=\sum (X _2Y)*P(X_2\cap Y)=(1*{1\over36})+(2*{1\over36})+(3*{1\over36})+(4*{1\over36})+(5*{1\over36})+(6*{1\over 36})+(4*{2\over36})+(6*{1\over36})+(8*{1\over36})+(10*{1\over36})+(12*{1\over36})+(9*{3\over36})+(12*{1\over36})+(15*{1\over36})+(18*{1\over36})+(16*{4\over36})+(20*{1\over36})+(24*{1\over36})+(25*{5\over36})+(30*{1\over36})+(36*{6\over36})={616\over36} E ( X 2 Y ) = ∑ ( X 2 Y ) ∗ P ( X 2 ∩ Y ) = ( 1 ∗ 36 1 ) + ( 2 ∗ 36 1 ) + ( 3 ∗ 36 1 ) + ( 4 ∗ 36 1 ) + ( 5 ∗ 36 1 ) + ( 6 ∗ 36 1 ) + ( 4 ∗ 36 2 ) + ( 6 ∗ 36 1 ) + ( 8 ∗ 36 1 ) + ( 10 ∗ 36 1 ) + ( 12 ∗ 36 1 ) + ( 9 ∗ 36 3 ) + ( 12 ∗ 36 1 ) + ( 15 ∗ 36 1 ) + ( 18 ∗ 36 1 ) + ( 16 ∗ 36 4 ) + ( 20 ∗ 36 1 ) + ( 24 ∗ 36 1 ) + ( 25 ∗ 36 5 ) + ( 30 ∗ 36 1 ) + ( 36 ∗ 36 6 ) = 36 616
We use the following formula to find c o r r ( Y , X 1 ) corr(Y,X_1) corr ( Y , X 1 ) ,
c o r r ( Y , X 1 ) = c o v ( X 1 , Y ) v a r ( X 1 ) ∗ v a r ( Y ) corr(Y,X_1)={cov(X_1,Y)\over \sqrt{var(X_1)*var(Y)}} corr ( Y , X 1 ) = v a r ( X 1 ) ∗ v a r ( Y ) co v ( X 1 , Y ) where c o v ( X 1 , Y ) = E ( X 1 Y ) − E ( X 1 ) ∗ E ( Y ) = 616 36 − ( 161 36 ∗ 21 6 ) = 1.45833331 cov(X_1,Y)=E(X_1Y)-E(X_1)*E(Y)={616\over36}-({161\over36}*{21\over6})=1.45833331 co v ( X 1 , Y ) = E ( X 1 Y ) − E ( X 1 ) ∗ E ( Y ) = 36 616 − ( 36 161 ∗ 6 21 ) = 1.45833331
Therefore,
c o r r ( X 1 , Y ) = 1.45833331 2.39792917 = 0.6082 ( 4 d p ) corr(X_1,Y)={1.45833331\over2.39792917}=0.6082(4dp) corr ( X 1 , Y ) = 2.39792917 1.45833331 = 0.6082 ( 4 d p )
To find c o r r ( Y , X 2 ) corr(Y,X_2) corr ( Y , X 2 ) we use the formula below,
c o r r ( Y , X 2 ) = c o v ( X 2 , Y ) v a r ( X 2 ) ∗ v a r ( Y ) corr(Y,X_2)={cov(X_2,Y)\over \sqrt{var(X_2)*var(Y)}} corr ( Y , X 2 ) = v a r ( X 2 ) ∗ v a r ( Y ) co v ( X 2 , Y ) where c o v ( X 2 , Y ) = E ( X 2 Y ) − E ( X 2 ) ∗ E ( Y ) = 616 36 − ( 161 36 ∗ 21 6 ) = 1.45833331 cov(X_2,Y)=E(X_2Y)-E(X_2)*E(Y)={616\over36}-({161\over36}*{21\over6})=1.45833331 co v ( X 2 , Y ) = E ( X 2 Y ) − E ( X 2 ) ∗ E ( Y ) = 36 616 − ( 36 161 ∗ 6 21 ) = 1.45833331
Therefore,
c o r r ( X 2 , Y ) = 1.45833331 2.39792917 = 0.6082 ( 4 d p ) corr(X_2,Y)={1.45833331\over2.39792917}=0.6082(4dp) corr ( X 2 , Y ) = 2.39792917 1.45833331 = 0.6082 ( 4 d p )
Therefore, c o r r ( Y , X 1 ) = c o r r ( Y , X 2 ) = 0.6082 corr(Y,X_1)=corr(Y,X_2)=0.6082 corr ( Y , X 1 ) = corr ( Y , X 2 ) = 0.6082
Comments