Question #275075

Q1. Find the density function of Y = ex if X is normally distributed with mean μ and standard

deviation σ.


Q2. Find the density function of Y = βX(1/α) where α > 0, β > 0 if X is exponentially distributed

with mean μ = 1.



1
Expert's answer
2021-12-09T14:41:08-0500

1.

density for Normal distribution:


f(x)=1σ2πe12(xμσ)2f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}


 cumulative distribution function:


FY(y)=lnyf(x)dxF_Y(y)=\int^{lny}_{-\infin}f(x)dx


To find the density, differentiate. Using the Fundamental Theorem of Calculus:

fY(y)=1yf(lny)f_Y(y)=\frac{1}{y}f(lny)


fY(y)=1y1σ2πe12(lnyμσ)2f_Y(y)=\frac{1}{y}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{lny-\mu}{\sigma})^2}


2.

f(x)=λeλx=exf(x)=\lambda e^{-\lambda x}=e^{-x}

X=(Y/β)αX=(Y/\beta)^{\alpha}


fY(y)=fX((Y/β)α)ddy((Y/β)α)=αe(y/β)αyα1/βαf_Y(y)=f_X((Y/\beta)^{\alpha})\frac{d}{dy}((Y/\beta)^{\alpha})=\alpha e^{-(y/\beta)^{\alpha}}y^{\alpha -1}/\beta^{\alpha}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS