Q1. Find the density function of Y = ex if X is normally distributed with mean μ and standard
deviation σ.
Q2. Find the density function of Y = βX(1/α) where α > 0, β > 0 if X is exponentially distributed
with mean μ = 1.
1.
density for Normal distribution:
f(x)=1σ2πe−12(x−μσ)2f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}f(x)=σ2π1e−21(σx−μ)2
cumulative distribution function:
FY(y)=∫−∞lnyf(x)dxF_Y(y)=\int^{lny}_{-\infin}f(x)dxFY(y)=∫−∞lnyf(x)dx
To find the density, differentiate. Using the Fundamental Theorem of Calculus:
fY(y)=1yf(lny)f_Y(y)=\frac{1}{y}f(lny)fY(y)=y1f(lny)
fY(y)=1y1σ2πe−12(lny−μσ)2f_Y(y)=\frac{1}{y}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{lny-\mu}{\sigma})^2}fY(y)=y1σ2π1e−21(σlny−μ)2
2.
f(x)=λe−λx=e−xf(x)=\lambda e^{-\lambda x}=e^{-x}f(x)=λe−λx=e−x
X=(Y/β)αX=(Y/\beta)^{\alpha}X=(Y/β)α
fY(y)=fX((Y/β)α)ddy((Y/β)α)=αe−(y/β)αyα−1/βαf_Y(y)=f_X((Y/\beta)^{\alpha})\frac{d}{dy}((Y/\beta)^{\alpha})=\alpha e^{-(y/\beta)^{\alpha}}y^{\alpha -1}/\beta^{\alpha}fY(y)=fX((Y/β)α)dyd((Y/β)α)=αe−(y/β)αyα−1/βα
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments