Q1. Find the density function of Y = ex if X is normally distributed with mean μ and standard
deviation σ.
Q2. Find the density function of Y = βX(1/α) where α > 0, β > 0 if X is exponentially distributed
with mean μ = 1.
1.
density for Normal distribution:
"f(x)=\\frac{1}{\\sigma\\sqrt{2\\pi}}e^{-\\frac{1}{2}(\\frac{x-\\mu}{\\sigma})^2}"
cumulative distribution function:
"F_Y(y)=\\int^{lny}_{-\\infin}f(x)dx"
To find the density, differentiate. Using the Fundamental Theorem of Calculus:
"f_Y(y)=\\frac{1}{y}f(lny)"
"f_Y(y)=\\frac{1}{y}\\frac{1}{\\sigma\\sqrt{2\\pi}}e^{-\\frac{1}{2}(\\frac{lny-\\mu}{\\sigma})^2}"
2.
"f(x)=\\lambda e^{-\\lambda x}=e^{-x}"
"X=(Y\/\\beta)^{\\alpha}"
"f_Y(y)=f_X((Y\/\\beta)^{\\alpha})\\frac{d}{dy}((Y\/\\beta)^{\\alpha})=\\alpha e^{-(y\/\\beta)^{\\alpha}}y^{\\alpha -1}\/\\beta^{\\alpha}"
Comments
Leave a comment