If binomial distribution X~Bin(50,0.4) coincides with normal distribution X*~N(μ,σ2) , then find the value of μ, σ and
P[X ≤ 5] , P[X ≤ 15] , P[5 ≤ X ≤ 15] , P[5 < X < 15].
"\\sigma^2=npq=50(0.4)(1-0.4)=12"
Continuity Correction Factor
Using Binomial DistributionUsing Normal Distribution with Continuity Correction "P(X\\leq 5)"
Using Normal Distribution with Continuity Correction
"\\approx P(Z<-4.18579)\\approx0.00001421"
Using Binomial DistributionUsing Normal Distribution with Continuity Correction "P(X\\leq 15)"
Using Normal Distribution with Continuity Correction
"\\approx P(Z<-1.299038)\\approx0.096965"
Using Binomial DistributionUsing Normal Distribution with Continuity Correction "P(5\\leq X\\leq 15)=P(X\\leq 15)-P(X<5)"
Using Normal Distribution with Continuity Correction
"=P(Z<\\dfrac{15.5-20}{2\\sqrt{3}})-P(Z<\\dfrac{4.5-20}{2\\sqrt{3}})"
"\\approx P(Z<-1.299038)-P(Z<-4.474465)"
"\\approx0.096965-0.00000383"
"\\approx0.096961"
Using Binomial DistributionUsing Normal Distribution with Continuity Correction "P(5< X<15)=P(X< 15)-P(X\\leq5)"
Using Normal Distribution with Continuity Correction
"=P(Z<\\dfrac{14.5-20}{2\\sqrt{3}})-P(Z<\\dfrac{5.5-20}{2\\sqrt{3}})"
"\\approx P(Z<-1.587713)-P(Z<-4.18579)"
"\\approx0.05617565-0.00001421"
"\\approx0.05616144"
Comments
Leave a comment