Use rules of inference and laws of logical equivalence to prove the following:
(p → q) ∧ (r → s) ∧ [t → ¬(q ∨ s)] ∧ t ⇒ (¬p ∧ ¬r)
p→q≡¬p∨qp → q\equiv \neg p\lor qp→q≡¬p∨q
r→s≡¬r∨sr → s\equiv \neg r\lor sr→s≡¬r∨s
t→⇁(q∨s)≡¬t∨¬(q∨s)t → ⇁(q ∨ s)\equiv \neg t \lor \neg(q ∨ s)t→⇁(q∨s)≡¬t∨¬(q∨s)
(¬t∨¬(q∨s))∧t≡¬(q∨s)∧t( \neg t \lor \neg(q ∨ s))\land t \equiv \neg(q ∨ s)\land t(¬t∨¬(q∨s))∧t≡¬(q∨s)∧t
if t is true, then:
¬(q∨s)∧t≡¬(q∨s)≡¬q∧¬s\neg(q ∨ s)\land t \equiv \neg(q ∨ s) \equiv \neg q \land \neg s¬(q∨s)∧t≡¬(q∨s)≡¬q∧¬s
then we get Destructive Dilemma that is Tautology:
(p→q)∧(r→s)∧(¬q∧¬s) ⟹ (¬p∧¬r)(p → q) ∧ (r → s) ∧ (\neg q \land \neg s) \implies (¬p ∧ ¬r)(p→q)∧(r→s)∧(¬q∧¬s)⟹(¬p∧¬r)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments