Question #264370

Use rules of inference and laws of logical equivalence to prove the following:

(p → q) ∧ (r → s) ∧ [t → ¬(q ∨ s)] ∧ t ⇒ (¬p ∧ ¬r)


1
Expert's answer
2021-11-12T08:02:38-0500

pq¬pqp → q\equiv \neg p\lor q

rs¬rsr → s\equiv \neg r\lor s

t(qs)¬t¬(qs)t → ⇁(q ∨ s)\equiv \neg t \lor \neg(q ∨ s)

(¬t¬(qs))t¬(qs)t( \neg t \lor \neg(q ∨ s))\land t \equiv \neg(q ∨ s)\land t


if t is true, then:

¬(qs)t¬(qs)¬q¬s\neg(q ∨ s)\land t \equiv \neg(q ∨ s) \equiv \neg q \land \neg s


then we get Destructive Dilemma that is Tautology:

(pq)(rs)(¬q¬s)    (¬p¬r)(p → q) ∧ (r → s) ∧ (\neg q \land \neg s) \implies (¬p ∧ ¬r)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS