Question #264354

The following table shows the probability distribution for the random variable B.

           

b

1

10

q

101

0.2

0.4

0.2

0.2

 

(i)        Given that , show that  and solve this equation.                                                                                         (4 marks)

(ii)       Calculate the value of .                                                              (2 marks)



1
Expert's answer
2021-11-12T07:04:56-0500
y110q101P(Y=y)0.20.40.20.2\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} y & 1 & 10 & q & 101 \\ \hline P(Y=y) & 0.2 & 0.4 & 0.2 & 0.2 \\ \end{array}

(i) Given Var(Y)=1385.2Var(Y)=1385.2

E(Y)=0.2(1)+0.4(10)+0.2(q)+0.2(101)E(Y)=0.2(1)+0.4(10)+0.2(q)+0.2(101)

=24.4+0.2q=24.4+0.2q

E(Y2)=0.2(1)2+0.4(10)2+0.2(q)2+0.2(101)2E(Y^2)=0.2(1)^2+0.4(10)^2+0.2(q)^2+0.2(101)^2

=2080.4+0.2q2=2080.4+0.2q^2

Var(Y)=E(Y2)(E(Y))2Var(Y)=E(Y^2)-(E(Y))^2

=2080.4+0.2q2(24.4+0.2q)2=2080.4+0.2q^2-(24.4+0.2q)^2

=2080.4+0.2q2595.369.76q+0.04q2=2080.4+0.2q^2-595.36-9.76q+0.04q^2

=0.16q29.76q+1485.04=0.16q^2-9.76q+1485.04

Then


0.16q29.76q+1485.04=1385.20.16q^2-9.76q+1485.04=1385.2

0.24q29.76q+99.84=00.24q^2-9.76q+99.84=0

q261q+624=0,Trueq^2-61q+624=0, True

(ii)

D=(61)24(1)(624)=352D=(-61)^2-4(1)(624)=35^2

q=61±352(1)q=\dfrac{61\pm35}{2(1)}

q1=61352=13q_1=\dfrac{61-35}{2}=13

q2=61+352=48q_2=\dfrac{61+35}{2}=48

E(Y)=24.4+13=37.4E(Y)=24.4+13=37.4

Or


E(Y)=24.4+48=72.4E(Y)=24.4+48=72.4

The greatest value of E(Y)E(Y) is 72.4.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS