Find the M.D. & variance of the following distribution. x 2 3 4 5 6 7 8 9 10 f 1 1 2 4 4 3 7 5 3
Mean:
"\\bar{x}=\\frac{\\Sigma f_i x_i}{\\Sigma f_i}"
"=\\frac{(2\\times1)+(3\\times1)+(4\\times2)+(5\\times4)+(6\\times4)+(7\\times3)+(8\\times7)+(9\\times5)+(10\\times3)}{1+1+2+4+4+3+7+5+3}"
"=\\frac{2+3+8+20+24+21+56+45+30}{30}"
"=\\frac{209}{30}=6.97"
Mean is approximately 7.
Variance:
"\\sigma^{2}=\\frac{\\Sigma f_i (x-\\bar{x})^{2}}{\\Sigma f_i}"
"=\\frac{1\\times(2-7)^2+1\\times(3-7)^2+2\\times(4-7)^2+4\\times(5-7)^2+4\\times(6-7)^2+3\\times(7-7)^2+7\\times(8-7)^2+5\\times(9-7)^2+3\\times(10-7)^2}{30}"
"=\\frac{25+16+18+16+4+0+7+20+27}{30}=4.43"
Mean Deviation:
"M.D = \\frac{\\Sigma f\\lvert x-\\bar{x}\\lvert}{N}"
"=\\frac{1\\times(2-7)+1\\times(3-7)+2\\times(4-7)+4\\times(5-7)+4\\times(6-7)+3\\times(7-7)+7\\times(8-7)+5\\times(9-7)+3\\times(10-7)}{30}"
"=\\frac{1}{30}=0.033"
Comments
Leave a comment