Answer to Question #264356 in Statistics and Probability for joshua picart

Question #264356
Find the  ∑ (x − μ)2
 on the values of (3, 5, 8,9) with the sample size of n=3.





1
Expert's answer
2021-11-12T06:50:50-0500


We have population values 3,5,8,9,3,5,8,9, population size N=4N=4

μ=3+5+8+94=6.25\mu=\dfrac{3+5+8+9}{4}=6.25σ2=14((36.25)2+(56.25)2+(86.25)2\sigma^2=\dfrac{1}{4}((3-6.25)^2+(5-6.25)^2+(8-6.25)^2

+(96.25)2)=5.6875+(9-6.25)^2)=5.6875

We have population values 3,5,8,19,3,5,8,19, population size N=4N=4 and sample size n=3.n=3. Thus, the number of possible samples which can be drawn without replacement is



(Nn)=(43)=4\dbinom{N}{n}=\dbinom{4}{3}=4SampleSampleSample meanNo.values(Xˉ)13,5,816/323,5,917/333,8,920/345,8,922/3\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 3,5,8 & 16/3 \\ \hdashline 2 & 3,5,9 & 17/3 \\ \hdashline 3 & 3,8,9 & 20/3 \\ \hdashline 4 & 5,8,9 & 22/3 \\ \hline \end{array}

The sampling distribution of the sample means.



Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)16/311/46.25256/3617/311/417/12289/3620/311/420/12400/3622/311/422/12484/36Total416.251429/36\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline & 16/3 & 1 & 1/4 & 6.25 & 256/36 \\ \hdashline & 17/3 & 1& 1/4 & 17/12 & 289/36 \\ \hdashline & 20/3 & 1 & 1/4 & 20/12 & 400/36 \\ \hdashline & 22/3 & 1& 1/4 & 22/12 & 484/36 \\ \hdashline Total & & 4 & 1 & 6.25 & 1429/36 \\ \hline \end{array}



The mean of the sampling distribution of the sample means is equal to the the mean of the population.


E(Xˉ)=μXˉ=6.25=μE(\bar{X})=\mu_{\bar{X}}=6.25=\mu




Var(Xˉ)=(Xˉμ)2Var(\bar{X})=\sum(\bar{X}-\mu)^2




=Xˉ2f(Xˉ)(Xˉf(Xˉ))2=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2


=142936(6.25)2=91144=\dfrac{1429}{36}-(6.25)^2=\dfrac{91}{144}



Verification:


Var(Xˉ)=σ2n(NnN1)=5.68753(4341)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{5.6875}{3}(\dfrac{4-3}{4-1})




=91144,True=\dfrac{91}{144}, True




(Xˉμ)2=91144\sum(\bar{X}-\mu)^2=\dfrac{91}{144}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment