a.
We have population values "1,3,4,6,8," population size "N=5"
"\\mu=\\dfrac{1+3+4+6+8}{5}=4.4" b.
"\\sigma^2=\\dfrac{1}{5}((1-4.4)^2+(3-4.4)^2+(4-4.4)^2"
"+(6-4.4)^2)+(8-4.4)^2)=5.84"
c.
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{5.84}\\approx2.4166"
d. We have population values "1,3,4,6,8" population size "N=5" and sample size "n=3." Thus, the number of possible samples which can be drawn without replacement is
"\\dbinom{N}{n}=\\dbinom{5}{3}=10""\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c}\n Sample & Sample & Sample \\ mean \\\\\n No. & values & (\\bar{X}) \\\\ \\hline\n 1 & 1,3,4 & 8\/3 \\\\\n \\hdashline\n 2 & 1,3,6 & 10\/3 \\\\\n \\hdashline\n 3 & 1,3,8 & 4 \\\\\n \\hdashline\n 4 & 1,4,6 & 11\/3 \\\\\n \\hdashline\n 5 & 1,4,8 & 13\/3\\\\\n \\hdashline\n 6 & 1,6,8 & 5 \\\\\n \\hdashline\n 7 & 3,4,6 & 13\/3 \\\\\n \\hdashline\n 8 & 3,4,8 & 5 \\\\\n \\hdashline\n 9 & 3,6,8 & 17\/3 \\\\\n \\hdashline\n 10 & 4,6,8 & 6 \\\\\n \\hline\n\\end{array}"The sampling distribution of the sample means.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n& \\bar{X} & f & f(\\bar{X}) & \\bar{X}f(\\bar{X})& \\bar{X}^2f(\\bar{X}) \\\\ \\hline\n & 8\/3 & 1 & 1\/10 & 8\/30 & 64\/90 \\\\\n \\hdashline\n & 10\/3 & 1 & 1\/10 & 10\/30 & 100\/90 \\\\\n \\hdashline\n & 11\/3 & 1 & 1\/10 & 11\/10 & 121\/90 \\\\\n \\hdashline\n & 4 & 1& 1\/10 & 12\/30 & 144\/90 \\\\\n \\hdashline\n & 13\/3 & 2 & 2\/10 & 26\/30 & 338\/90 \\\\\n \\hdashline\n & 5 & 2 & 2\/10 & 30\/30 & 450\/90 \\\\\n \\hdashline\n & 6 & 1 & 1\/10 & 18\/30 & 324\/90 \\\\\n \\hdashline\n & 17\/3 & 1 & 1\/10 & 17\/30 & 289\/90 \\\\\n \\hdashline\n Total & & 10 & 1 & 4.4 & 61\/3 \\\\ \\hline\n\\end{array}"
"E(\\bar{X})=\\sum\\bar{X}f(\\bar{X})=4.4"
The mean of the sampling distribution of the sample means is equal to the the mean of the population.
"E(\\bar{X})=\\mu_{\\bar{X}}=4.4=\\mu"
e.
"Var(\\bar{X})=\\sum\\bar{X}^2f(\\bar{X})-(\\sum\\bar{X}f(\\bar{X}))^2"
"=\\dfrac{61}{3}-(4.4)^2=\\dfrac{2.92}{3}"
"\\sigma_{\\bar{X}}=\\sqrt{Var(\\bar{X})}=\\sqrt{\\dfrac{2.92}{3}}\\approx0.9866"Verification:
"Var(\\bar{X})=\\dfrac{\\sigma^2}{n}(\\dfrac{N-n}{N-1})=\\dfrac{5.84}{3}(\\dfrac{5-3}{5-1})"
"=\\dfrac{2.92}{3}, True"
Comments
Leave a comment