Let x be a continuous random variable having density function fx(x)= 1/2 e^-|x| dx, - infinity< x<infinity. show that Mx(t)= (1-t^2)^-1 , -1<x<1
for "-1<x<1" :
"M_X(t)=E(e^{tx})=\\displaystyle{\\int^{1}_{-1}}e^{tx}f_X(x)dx=\\frac{1}{2}\\displaystyle{\\int^{0}_{-1}}e^{tx}\\cdot e^{x}dx+\\frac{1}{2}\\displaystyle{\\int^{1}_{0}}e^{tx}\\cdot e^{-x}dx="
"=\\frac{e^{x(t+1)}}{2(t+1)}|^0_{-1}+\\frac{e^{-x(1-t)}}{2(t-1)}|^{1}_{0}=\\frac{1}{2(t+1)}-\\frac{e^{-(t+1)}}{2(t+1)}+\\frac{e^{-1(t+1)}}{2(t-1)}-\\frac{1}{2(t-1)}=\\frac{1}{1-t^2}"
Comments
Leave a comment