Question #258860

Let x be a continuous random variable having density function fx(x)= 1/2 e^-|x| dx, - infinity< x<infinity. show that Mx(t)= (1-t^2)^-1 , -1<x<1


1
Expert's answer
2021-11-01T19:55:34-0400


for 1<x<1-1<x<1 :


MX(t)=E(etx)=11etxfX(x)dx=1210etxexdx+1201etxexdx=M_X(t)=E(e^{tx})=\displaystyle{\int^{1}_{-1}}e^{tx}f_X(x)dx=\frac{1}{2}\displaystyle{\int^{0}_{-1}}e^{tx}\cdot e^{x}dx+\frac{1}{2}\displaystyle{\int^{1}_{0}}e^{tx}\cdot e^{-x}dx=


=ex(t+1)2(t+1)10+ex(1t)2(t1)01=12(t+1)e(t+1)2(t+1)+e1(t+1)2(t1)12(t1)=11t2=\frac{e^{x(t+1)}}{2(t+1)}|^0_{-1}+\frac{e^{-x(1-t)}}{2(t-1)}|^{1}_{0}=\frac{1}{2(t+1)}-\frac{e^{-(t+1)}}{2(t+1)}+\frac{e^{-1(t+1)}}{2(t-1)}-\frac{1}{2(t-1)}=\frac{1}{1-t^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS