Let x be a continuous random variable having density function fx(x)= 1/2 e^-|x| dx, - infinity< x<infinity. show that Mx(t)= (1-t^2)^-1 , -1<x<1
for −1<x<1-1<x<1−1<x<1 :
MX(t)=E(etx)=∫−11etxfX(x)dx=12∫−10etx⋅exdx+12∫01etx⋅e−xdx=M_X(t)=E(e^{tx})=\displaystyle{\int^{1}_{-1}}e^{tx}f_X(x)dx=\frac{1}{2}\displaystyle{\int^{0}_{-1}}e^{tx}\cdot e^{x}dx+\frac{1}{2}\displaystyle{\int^{1}_{0}}e^{tx}\cdot e^{-x}dx=MX(t)=E(etx)=∫−11etxfX(x)dx=21∫−10etx⋅exdx+21∫01etx⋅e−xdx=
=ex(t+1)2(t+1)∣−10+e−x(1−t)2(t−1)∣01=12(t+1)−e−(t+1)2(t+1)+e−1(t+1)2(t−1)−12(t−1)=11−t2=\frac{e^{x(t+1)}}{2(t+1)}|^0_{-1}+\frac{e^{-x(1-t)}}{2(t-1)}|^{1}_{0}=\frac{1}{2(t+1)}-\frac{e^{-(t+1)}}{2(t+1)}+\frac{e^{-1(t+1)}}{2(t-1)}-\frac{1}{2(t-1)}=\frac{1}{1-t^2}=2(t+1)ex(t+1)∣−10+2(t−1)e−x(1−t)∣01=2(t+1)1−2(t+1)e−(t+1)+2(t−1)e−1(t+1)−2(t−1)1=1−t21
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments