Question #258865

The standard deviation of the running time of a sample of 200 fuses was found to be



100 hours. Find a 99% confidence interval for the standard deviation of all such fuses.




1
Expert's answer
2021-11-02T10:45:27-0400

The critical values for α=0.01\alpha = 0.01 and df=n1=2001=199df =n-1=200-1=199 degrees of freedom are χL2=χ1α/2,n12=151.3699\chi_L^2 = \chi^2_{1-\alpha/2,n-1} = 151.3699 and χU2=χα/2,n12=254.1352.\chi_U^2 = \chi^2_{\alpha/2,n-1} = 254.1352.

The corresponding confidence interval is computed as shown below:


CI(Variance)=((n1)s2χα/2,n12,(n1)s2χ1α/2,n12)CI(Variance)=(\dfrac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}},\dfrac{(n-1)s^2}{ \chi^2_{1-\alpha/2,n-1}}) ​

=((2001)(100)254.1352,(2001)(100)151.3699)=(\dfrac{(200-1)(100)}{254.1352},\dfrac{(200-1)(100)}{ 151.3699}) ​

=(78.3048,131.4660)=(78.3048, 131.4660)

Now that we have the limits for the confidence interval, the limits for the 99% confidence interval for the population standard deviation are obtained by simply taking the squared root of the limits of the confidence interval for the variance, so then:


CI(Standard Deviation)CI(Standard \ Deviation)

=(78.3048,131.4660)=(8.8490,11.4659)=( \sqrt{78.3048}, \sqrt{131.4660})=(8.8490,11.4659)

Therefore, based on the data provided, the 99% confidence interval for the population variance is 78.3048<σ2<131.4660,78.3048 < \sigma^2 < 131.4660, and the 99% confidence interval for the population standard deviation is 8.8490<σ<11.4659.8.8490 < \sigma < 11.4659.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS