Question #253062

Suppose that

𝑇1 =(𝑋1 −𝜇)2

𝑇2 =1

2[(𝑋1 −𝜇)2 +(𝑋2 −𝜇)2]

And

𝑇3 =1

2(𝑋1 −𝑋2)2

Are estimators for 𝜎2.

i) Show whether or not 𝑇3 is an unbiased estimator of 𝜎2. (4)

ii) Which estimator is the most efficient between 𝑇1 and 𝑇2? (6)


1
Expert's answer
2021-10-20T17:48:05-0400

i)

E(σ2)=n1nσ2E(\sigma^2)=\frac{n-1}{n}\sigma^2


E(T3)=E((X1X2)22)=12(2(μ2+σ2)2μ2)=σ2/2E(T_3)=E(\frac{(X_1-X_2)^2}{2})=\frac{1}{2}(2(\mu^2+\sigma^2)-2\mu^2)=\sigma^2/2


Since E(σ2)E(T3)E(\sigma^2)\neq E(T_3) , T3 is a biased estimator of 𝜎2.


ii)

E(T1)=E(T_1)= E(T1)=E()=E(T_1)=E()=E(T1)=(n1)σ2E(T_1)=(n-1)\sigma^2


E(T2)=122(n1)σ2=(n1)σ2E(T_2)=\frac{1}{2}\cdot2(n-1)\sigma^2=(n-1)\sigma^2


So, 𝑇1 and 𝑇2 are same efficient estimators.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS