Suppose that
π1 =(π1 βπ)2
π2 =1
2[(π1 βπ)2 +(π2 βπ)2]
And
π3 =1
2(π1 βπ2)2
Are estimators for π2.
i) Show whether or not π3 is an unbiased estimator of π2. (4)
ii) Which estimator is the most efficient between π1 and π2? (6)
i)
"E(\\sigma^2)=\\frac{n-1}{n}\\sigma^2"
"E(T_3)=E(\\frac{(X_1-X_2)^2}{2})=\\frac{1}{2}(2(\\mu^2+\\sigma^2)-2\\mu^2)=\\sigma^2\/2"
Since "E(\\sigma^2)\\neq E(T_3)" , T3 is a biased estimator of π2.
ii)
"E(T_1)=" "E(T_1)=E()=""E(T_1)=(n-1)\\sigma^2"
"E(T_2)=\\frac{1}{2}\\cdot2(n-1)\\sigma^2=(n-1)\\sigma^2"
So, π1 and π2 are same efficient estimators.
Comments
Leave a comment