- Analysis of methods:
1.1 3 day moving average
day123456789101112sales607011080708511510565759585Model6070360+70+110=80370+110+80=88.63110+80+70=88.6380+70+85=78.3370+85+115=90385+115+105=101.63115+105+65=953105+65+75=81.6365+75+95=78.3375+95+85=85Error00110−80=3086.6−80=6.686.6−70=16.685−78.3=6.6115−90=25105−101.6=3.495−65=3081.6−75=6.695−78.3=16.685−85=0Cummulated Err000+30=3030+6.6=36.636.6+16.6=53.253.2+6.6=6060+25=8585+3.4=88.488.4+30=118.4118.4+6.6=125125+6.6=141.6141.6+0=141.6
MEAN ERROR =141.6/12=11.8
1.1 4 day moving average
day123456789101112sales607011080708511510565759585Model6070110460+70+110+80=80470+110+80+70=82.54110+80+70+85=86.25480+70+85+115=87.5470+85+115+105=93.75485+115+105+65=92.54115+105+65+75=904105+65+75+95=85465+75+95+85=80Error00080−80=082.5−70=12.586.25−85=1.25115−87.5=1.27.5105−93.75=11.25.592.5−65=27.590−75=1595−85=1085−80=5Cummulated Err000+30=300+0=00+12.5=12.512.5.+1.25=13.7513.75+27.5=41.2541.25+11.25=52.552.5+27.5=8080+15=9595+10=105105+5=110
MEAN ERROR =110/12=9.17
Thus method of 4 day moving average more exactly correspond to data than method of 3 day moving average.
1,3 3 day weighted moving average analysis with weights w1=0.2, w2=0.3 and w3=0.5 with w1 on the oldest data
day123456789101112sales607011080708511510565759585Model607060⋅0.2+70⋅0.3+110⋅0.5=8870⋅0.2+110⋅0.3+80⋅0.5=87110⋅0.2+80⋅0.3+70⋅0.5=8180⋅0.2+70⋅0.3+85⋅0.5=79.570⋅0.2+85⋅0.3+115⋅0.5=9785⋅0.2+115⋅0.3+105⋅0.5=104115⋅0.2+105⋅0.3+65⋅0.5=87105⋅0.2+65⋅0.3+75⋅0.5=7865⋅0.2+75⋅0.3+95⋅0.5=8375⋅0.2+95⋅0.3+85⋅0.5=88Error00110−88=2287−80=781−70=1185−79.5=5.5115−97=18105−104=187−65=2278−75=395−83=1286−85=1Cummulated Err000+22=2222+7=2929+11=4040+5.5=45.545.5+18=63.563.5=1=64.564.5+22=86.586.5+3=89.589.5+12=101.5101.5+1=102.5
MEAN ERROR =102.5/12=8.5
Thus last merhod is a best from three considered.
1.4 exponential smoothing analysis with a = 0.3
day123456789101112sales607011080708511510565759585Model600.7⋅60+0.3⋅70=630.7⋅63+0.3⋅110=77.10.7⋅77.1+0.3⋅80=77.970.7⋅77.97+0.3⋅70=75.5790.7⋅75.579+0.3⋅85=78.40530.7⋅78.4053+0.3⋅115=89.3830.7⋅89.383+0.3⋅105=94.0690.7⋅94.069+0.3⋅65=85.3480.7⋅85.348+0.3⋅75=82.2440.7⋅82.244+0.3⋅95=86.070.7⋅86.07+0.3⋅85=85.749Error070−63=7110−77.1=32.980−77.97=2.0375.579−70=5.57985−78.4053=6.5947115−89.383=25.616105−94.069=10.93185.348−65=20.34882.244−75=7.24495−86.07=9.92985.749−85=0.749Cummulated Err00+7=77+32.9=39.939.9+2.03=41.9341.93+5.579=47.50947.509+6.5947=54.103754.1037+25.616=79.72079.720+9.931=90.65190.651+20.348=110.999110.999+7.244=118.243118.243+8,929=127.17127.17+0.749=127.92
MEAN ERROR =127.9/12=10.7
Thus the method of exponential smoothing analysis with a = 0.3 gives the bigger mean error than best method of day weighted moving average analysis with weights w1=0.2, w2=0.3 and w3=0.5 with w1 on the oldest data and finally we take lass method as a best at whole.
f. Forecast day 13 sales of fishing rods using the model chosen in part (e)
we apply /the best method of 'day weighted moving average analysis with weights w1=0.2, w2=0.3 and w3=0.5 with w1 on the oldest data ',
use data of last three days and calculate forecast value:
75⋅0.2+95⋅0.3+85⋅0.5=88
Thus in 13 day we expect 88 sales.
Comments
Leave a comment