Question #252937

A population consists of three numbers (3, 6 ,9). Consider all possible samples of sizes 2 which can be drawn without replacement from the population. Find the following


1
Expert's answer
2021-10-18T17:15:08-0400

I.


mean=μ=3+6+93=6mean=\mu=\dfrac{3+6+9}{3}=6

variance=σ2=13((36)2+(66)2variance=\sigma^2=\dfrac{1}{3}((3-6)^2+(6-6)^2

+(96)2)=6+(9-6)^2)=6

σ=σ2=6\sigma=\sqrt{\sigma^2}=\sqrt{6}

II. There are (32)=3\dbinom{3}{2}=3 samples of size two which can be drawn without replacement: 


SampleSample mean(3,6)4.5(3,9)6(6,9)7.5\begin{matrix} Sample & Sample\ mean \\ (3,6) & 4.5 \\ (3,9) & 6 \\ (6,9) & 7.5 \\ \end{matrix}

III.


XˉP(Xˉ)4.51/361/37.51/3\begin{matrix} \bar{X} & P(\bar{X}) \\ 4.5 & 1/3 \\ 6 & 1/3 \\ 7.5 & 1/3 \\ \end{matrix}

IV.


μXˉ=4.5(1/3)+6(1/3)+7.5(1/3)=6\mu_{\bar{X}}=4.5(1/3)+6(1/3)+7.5(1/3)=6


iXˉi2P(Xiˉ)=4.52(1/3)+62(1/3)+7.52(1/3)\sum_i\bar{X}_i^2P(\bar{X_i})=4.5^2(1/3)+6^2(1/3)+7.5^2(1/3)=37.5=37.5

σXˉ2=iXˉi2P(Xiˉ)μXˉ2=37.562=1.5\sigma_{\bar{X}}^2=\sum_i\bar{X}_i^2P(\bar{X_i})-\mu_{\bar{X}}^2=37.5-6^2=1.5

σXˉ=σXˉ2=1.5\sigma_{\bar{X}}=\sqrt{\sigma_{\bar{X}}^2}=\sqrt{1.5}

μXˉ=6,σXˉ=1.5\mu_{\bar{X}}=6, \sigma_{\bar{X}}=\sqrt{1.5}

V.

The mean μXˉ\mu_{\bar{X}} and standard deviation σXˉ\sigma_{\bar{X}} of the sample mean Xˉ\bar{X} satisfy


μXˉ=6=μ,\mu_{\bar{X}}=6=\mu,

σXˉ=1.5=623231=σnNnN1\sigma_{\bar{X}}=\sqrt{1.5}=\dfrac{\sqrt{6}}{\sqrt{2}}\sqrt{\dfrac{3-2}{3-1}}=\dfrac{\sigma}{\sqrt{n}}\sqrt{\dfrac{N-n}{N-1}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS