A population consists of three numbers (3, 6 ,9). Consider all possible samples of sizes 2 which can be drawn without replacement from the population. Find the following
I.
"variance=\\sigma^2=\\dfrac{1}{3}((3-6)^2+(6-6)^2"
"+(9-6)^2)=6"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{6}"
II. There are "\\dbinom{3}{2}=3" samples of size two which can be drawn without replacement:
III.
IV.
"\\sigma_{\\bar{X}}^2=\\sum_i\\bar{X}_i^2P(\\bar{X_i})-\\mu_{\\bar{X}}^2=37.5-6^2=1.5"
"\\sigma_{\\bar{X}}=\\sqrt{\\sigma_{\\bar{X}}^2}=\\sqrt{1.5}"
"\\mu_{\\bar{X}}=6, \\sigma_{\\bar{X}}=\\sqrt{1.5}"
V.
The mean "\\mu_{\\bar{X}}" and standard deviation "\\sigma_{\\bar{X}}" of the sample mean "\\bar{X}" satisfy
"\\sigma_{\\bar{X}}=\\sqrt{1.5}=\\dfrac{\\sqrt{6}}{\\sqrt{2}}\\sqrt{\\dfrac{3-2}{3-1}}=\\dfrac{\\sigma}{\\sqrt{n}}\\sqrt{\\dfrac{N-n}{N-1}}"
Comments
Leave a comment