1) Plastic is now surpassing aluminum as the packaging material of choice for soft drinks. According to a recent article, 80% of all new vending business is going to plastic. If a random sample of 10 new vending businesses is selected, what are P(X>2), P(X<5), and P(X<9)?
"p=0.8 \\\\\n\nq = 1-p = 0.2 \\\\\n\nn = 10 \\\\\n\nP(X=x) = \\binom{n}{x}p^xq^{n-x} \\\\\n\nP(X>2) = 1- P(X\u22642) = 1 -[P(X=0) + P(X=1) + P(X=2)] \\\\\n\nP(X=0) = \\frac{10!}{0!(10-0)!} \\times 0.8^0 \\times 0.2^{10-0} = 1.02 \\times 10^{-7}\\\\\n\nP(X=1) = \\frac{10!}{1!(10-1)!} \\times 0.8^1 \\times 0.2^{10-1} = 40.96 \\times 10^{-7} \\\\\n\nP(X=2) = \\frac{10!}{2!(10-2)!} \\times 0.8^2 \\times 0.2^{10-2} = 437.28 \\times 10^{-7} \\\\\n\nP(X>2) = 1- 479.26 \\times 10^{-7} = 0.99995"
"P(X<5) = P(X=0) + P(X=1) + P(X=2) + P(X=3) + P(X=4) \\\\\n\nP(X=3) = \\frac{10!}{3!(10-3)!} \\times 0.8^3 \\times 0.2^{10-3} = 0.000688 \\\\\n\nP(X=4) = \\frac{10!}{4!(10-4)!} \\times 0.8^4 \\times 0.2^{10-4} = 0.004128 \\\\\n\nP(X<5) = 0.004864"
"P(X<9) = 1 -[P(X=9) + P(X=10)] \\\\\n\nP(X=9) = \\frac{10!}{9!(10-9)!} \\times 0.8^9 \\times 0.2^{10-9} = 0.268435 \\\\\n\nP(X=10) = \\frac{10!}{10!(10-10)!} \\times 0.8^10 \\times 0.2^{10-10} = 0.107374 \\\\\n\nP(X<9) = 1 -0.375809 =0.624191"
Comments
Leave a comment