Answer to Question #253056 in Statistics and Probability for adeq

Question #253056

a) Suppose that 𝑋1,𝑋2,...,𝑋𝑛 is a random sample from a distribution with

probability density function:

𝑓(𝑥;𝜆)={

1

6𝜆4𝑥3𝑒−𝑥

𝜆, 𝑖𝑓 𝑥 ≥0 𝑎𝑛𝑑 𝜆>0

0, 𝑒𝑙𝑠𝑒 𝑤ℎ𝑒𝑟𝑒

i) Show whether or not 𝑓(𝑥;𝜆) belongs to the 1-parameter exponential family.

(5)

ii) Derive the Maximum likelihood estimator of 𝜆. (8)

iii) Suppose that 𝑛=200, ∑ 𝑥𝑖200𝑖=1 =20,∑ 𝑥𝑖2200𝑖=1 =100, and ∑ 𝑥𝑖3200𝑖=1 =250.

Determine the Maximum likelihood estimate of 𝜆. (2)


1
Expert's answer
2021-10-19T11:29:00-0400

i)

0x3exλdx=1λx3exλ0+3λ0x2exλdx=06λ2x2exλ0+6λ20xexλdx=06λ3xexλ0+6λ30exλdx=6λ4exλ0=0+6λ4=6λ4\int_0^\infty x^3e^{-x\lambda}dx=-\frac{1}{\lambda}x^3e^{-x\lambda}|_0^\infty+\frac{3}{\lambda}\int_0^\infty x^2e^{-x\lambda}dx=0-\frac{6}{\lambda^2}x^2e^{-x\lambda}|_0^\infty+\frac{6}{\lambda^2}\int_0^\infty xe^{-x\lambda}dx=0-\frac{6}{\lambda ^3}xe^{-x\lambda}|_0^\infty+\frac{6}{\lambda^3}\int_0^\infty e^{-x\lambda}dx=-\frac{6}{\lambda ^4}e^{-x\lambda}|_0^\infty=0+\frac{6}{\lambda ^4}=\frac{6}{\lambda ^4}

Therefore 0(16λ4x3exλ)dx=1\int_0^\infty(\frac{1}{6}\lambda^4 x^3 e^{-x\lambda})dx=1

I.e. p(x.λ)=16λ4x3exλ,x>0p(x.\lambda)=\frac{1}{6}\lambda^4 x^3 e^{-x\lambda},x>0 is exponential 1 parametric distribution.

2) Maximum likehood estimator of λ\lambda :

L(λ)=p(x1,...,xnλ)=i=1np(xiλ)=λ4n6n(i=1nxi)3eλ1nxiL(\lambda)=p(x_1,...,x_n|\lambda)=\prod_{i=1}^np(x_i\lambda)=\frac{\lambda^{4n}}{6^n}(\prod_{i=1}^{n}x_i)^3e^{-\lambda\sum_1^nx_i}

lnL(λ)=4nln(λ)nln(6)+3lnlnL(\lambda)=4n\cdot ln(\lambda)-n\cdot ln(6)+3ln (i=1nxi)(\prod_{i=1}^{n}x_i)- λ1nxi\lambda\sum_1^nx_i ;

(lnL(λ))=4nλ(lnL(\lambda))'=\frac{4n}{\lambda}- i=1nxi=0;\sum_{i=1}^nx_i=0;

λ=4ni=1nxi=4x\lambda=\frac{4n}{\sum_{i=1}^nx_i}=\frac{4}{\overline x} - the likehood estimator.

3)

λ^=4200i=1200xi=80020=40\hat\lambda=\frac{4\cdot 200}{\sum_{i=1}^{200}x_i}=\frac{800}{20}=40



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment