a) Suppose that π1,π2,...,ππ is a random sample from a distribution with
probability density function:
π(π₯;π)={
1
6π4π₯3πβπ₯
π, ππ π₯ β₯0 πππ π>0
0, πππ π π€βπππ
i) Show whether or not π(π₯;π) belongs to the 1-parameter exponential family.
(5)
ii) Derive the Maximum likelihood estimator of π. (8)
iii) Suppose that π=200, β π₯π200π=1 =20,β π₯π2200π=1 =100, and β π₯π3200π=1 =250.
Determine the Maximum likelihood estimate of π. (2)
i)
"\\int_0^\\infty x^3e^{-x\\lambda}dx=-\\frac{1}{\\lambda}x^3e^{-x\\lambda}|_0^\\infty+\\frac{3}{\\lambda}\\int_0^\\infty x^2e^{-x\\lambda}dx=0-\\frac{6}{\\lambda^2}x^2e^{-x\\lambda}|_0^\\infty+\\frac{6}{\\lambda^2}\\int_0^\\infty xe^{-x\\lambda}dx=0-\\frac{6}{\\lambda ^3}xe^{-x\\lambda}|_0^\\infty+\\frac{6}{\\lambda^3}\\int_0^\\infty e^{-x\\lambda}dx=-\\frac{6}{\\lambda ^4}e^{-x\\lambda}|_0^\\infty=0+\\frac{6}{\\lambda ^4}=\\frac{6}{\\lambda ^4}"
Therefore "\\int_0^\\infty(\\frac{1}{6}\\lambda^4 x^3 e^{-x\\lambda})dx=1"
I.e. "p(x.\\lambda)=\\frac{1}{6}\\lambda^4 x^3 e^{-x\\lambda},x>0" is exponential 1 parametric distribution.
2) Maximum likehood estimator of "\\lambda" :
"L(\\lambda)=p(x_1,...,x_n|\\lambda)=\\prod_{i=1}^np(x_i\\lambda)=\\frac{\\lambda^{4n}}{6^n}(\\prod_{i=1}^{n}x_i)^3e^{-\\lambda\\sum_1^nx_i}"
"lnL(\\lambda)=4n\\cdot ln(\\lambda)-n\\cdot ln(6)+3ln" "(\\prod_{i=1}^{n}x_i)"- "\\lambda\\sum_1^nx_i" ;
"(lnL(\\lambda))'=\\frac{4n}{\\lambda}-" "\\sum_{i=1}^nx_i=0;"
"\\lambda=\\frac{4n}{\\sum_{i=1}^nx_i}=\\frac{4}{\\overline x}" - the likehood estimator.
3)
"\\hat\\lambda=\\frac{4\\cdot 200}{\\sum_{i=1}^{200}x_i}=\\frac{800}{20}=40"
Comments
Leave a comment