i)
∫0∞x3e−xλdx=−λ1x3e−xλ∣0∞+λ3∫0∞x2e−xλdx=0−λ26x2e−xλ∣0∞+λ26∫0∞xe−xλdx=0−λ36xe−xλ∣0∞+λ36∫0∞e−xλdx=−λ46e−xλ∣0∞=0+λ46=λ46
Therefore ∫0∞(61λ4x3e−xλ)dx=1
I.e. p(x.λ)=61λ4x3e−xλ,x>0 is exponential 1 parametric distribution.
2) Maximum likehood estimator of λ :
L(λ)=p(x1,...,xn∣λ)=∏i=1np(xiλ)=6nλ4n(∏i=1nxi)3e−λ∑1nxi
lnL(λ)=4n⋅ln(λ)−n⋅ln(6)+3ln (∏i=1nxi)- λ∑1nxi ;
(lnL(λ))′=λ4n− ∑i=1nxi=0;
λ=∑i=1nxi4n=x4 - the likehood estimator.
3)
λ^=∑i=1200xi4⋅200=20800=40
Comments
Leave a comment